中国科学院金属所在含B不锈钢乏燃料湿法贮存环境腐蚀机理研究方面取得新进展
2023-12-18 15:28:52 作者:中国科学院金属所 来源:腐蚀与防护 分享至:

 

 

核能作为经济、高效、清洁能源,在安全性、稳定性以及环境友好性上具有明显优势,逐渐成为未来能源结构中的支柱。然而,在利用核能的同时,也伴随着乏燃料的产生,确保乏燃料贮存安全是核电持续发展的重要保障。

 

 

 

由于B元素具有低密度、高中子吸收截面、与热中子作用后无二次辐射污染等特性,国内外核电站乏燃料的贮存方式多采用湿法贮存,即将乏燃料贮存于配有中子吸收材料格架的H3BO3水池中。含B奥氏体不锈钢具有良好的中子屏蔽性能,同时具备高的强度和良好的韧性,被广泛用作中子吸收材料。然而,B元素的添加会导致含B不锈钢中大量析出(Cr, Fe)2B相,这些第二相对湿法贮存环境中的含B不锈钢腐蚀性能影响的内在机制尚未澄清,严重制约了高性能含B不锈钢的研发与应用。 

近期,中国科学院金属研究所沈阳材料科学国家研究中心材料动力学研究部王建强研究员课题组在前期乏燃料湿法贮存环境中材料腐蚀行为研究基础上,与沈阳材料科学国家研究中心材料设计与计算研究部陈星秋研究员课题组、技术支撑部崔静萍高级工程师、材料腐蚀与防护中心自然环境腐蚀研究部马爱利副研究员、中国机械总院集团沈阳铸造研究所于波研究员课题组和牛津仪器科技(上海)有限公司刘志文博士等合作,在乏燃料湿法贮存环境中含B不锈钢的腐蚀机理方面,尤其是B元素含量和H3BO3对含B不锈钢点蚀性能的影响机制方面取得了新进展。 

该团队通过热力学计算设计并制备了B元素质量分数分别为0.6% (B06)、1.2% (B12)和1.8% (B18)的三种亚共晶含B不锈钢(图1),并系统研究了不同Cl-/H3BO3比的溶液环境中三种合金的电化学腐蚀行为。研究表明,三种含B不锈钢均由γ奥氏体基体和(Cr, Fe)2B第二相组成,其点蚀特性取决于局部贫Cr区诱导的蚀点萌生和微电偶作用控制的蚀点生长的协同作用(图2),导致点蚀优先发生在(Cr, Fe)2B/γ基体界面处(图3)。随B含量增加,含B不锈钢中的(Cr, Fe)2B相体积分数增加,平均尺寸增大,(Cr, Fe)2B/γ基体界面处贫Cr区的密度和宽度增加,贫Cr区中Cr含量降低,这些变化增加了含B不锈钢表面钝化膜的不均匀性,点蚀萌生更为敏感。另一方面,(Cr, Fe)2B相体积分数增加且尺寸增大,加剧了两相间的微电偶作用,进一步促进了含B不锈钢的点蚀稳定生长,最终导致高B不锈钢钝化性和长期使役性能的降低(图4)。此外,通过电化学实验和第一性原理计算表明,含B不锈钢点蚀性能敏感于溶液环境中的Cl-/H3BO3比值:在低Cl-/H3BO3环境,B(OH)4-的竞争性吸附抑制了Cl-在合金钝化膜表面的吸附,从而抑制了蚀点的萌生,增强了含B不锈钢的耐蚀性(图5)。反之,在高Cl-/H3BO3环境,H3BO3电离的酸化作用促进了点蚀稳定生长,进而降低了合金的耐蚀性。基于本研究提出的(Cr, Fe)2B相诱导的“贫Cr-微电偶耦合机制”,该团队优化了B18合金热轧工艺,改善了(Cr, Fe)2B相的形态、尺寸及分布特征,从而显著提升了高中子吸收含B不锈钢的耐点蚀性能(图6)。 

图1 三种不同B含量含B不锈钢的设计:通过热力学计算获得 (a) 含B不锈钢伪二元相图;(b) B06合金、(c) B12合金和 (d) B18合金的平衡相随温度的分数

图2 三种含B不锈钢的TEM表征:(a-c) HAADF像;(d-e) (Cr, Fe)2B相和(f-g) γ基体的选区电子衍射结果;(h-j) (Cr, Fe)2B/γ基体界面的成分分布;(k-m) B18合金的SKPFM结果

图3 三种含B不锈钢微纳尺度的腐蚀形貌特征,点蚀优先发生在(Cr, Fe)2B/γ基体界面处

图4 三种含B不锈钢的电化学腐蚀性能:(a-f) 三种含B不锈钢在不同Cl-/H3BO3比的溶液中的极化曲线、(g) 钝化区间变化统计

图5 第一性原理计算B(OH)4-和Cl-在(a1-a3) γ基体、(b1-b3) (Cr, Fe)2B相、(c1-c3) γ基体表面钝化膜和(d1-d3) (Cr, Fe)2B相表面钝化膜的吸附能及键长

图6 高B不锈钢合金结构调控及抗点蚀腐蚀性能的提升

相关研究成果已发表在Acta Materialia上。该工作得到了国家自然科学联合基金项目、中国科学院重点部署项目、国家科技重大专项及沈阳材料科学国家研究中心等项目的资助。

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

    标签:
相关文章
无相关信息