仿生聚合物刷制备及海洋防污应用研究进展
2025-03-07 16:24:33 作者:伍大恒,王佳宁,张涛 来源:中国表面工程 分享至:

 

  • 0 前言

  • 海洋生物污损破坏海洋工程设施,增加船舶行驶阻力,使海洋经济遭受巨大的损失,已成为制约海洋资源开发和利用的重要因素之一[1]。通常采取的防污措施是利用防污剂毒杀污损生物,阻止其在海工装备及船舶表面附着。传统的海洋防污涂料中含有大量毒性防污剂(如氧化亚铜、三丁基锡等),但同时破坏生态环境,严重危害人类的健康[1-4]。因此,开发高效持久、绿色环保的新型海洋防污材料已成为海洋新材料研究的热点和难点。

  • 自然界中许多动植物展现出天然的自净特性,向自然学习,利用生物的结构和功能原理来开发仿生防污材料,为海洋防污技术的发展提供了解决问题的灵感与思路[5-6]。海葵是一种广泛生长在海洋里的生物,具有丰富的软毛结构(图1a),它可以在海水中形成微观“刷”型界面,能够抑制污损生物产生的生物胶的凝固,从而有效防止生物附着。此外,滑膜关节是生物体重要的组成部分,其中存在大量类似海绵状的大分子网络结构[7]。研究发现,关节中的糖蛋白分子以透明质酸为主链,硫酸软骨素和硫酸角质素等多糖分子为侧链,并通过球形蛋白分子相连接而形成特殊的“刷”型结构[7-8] (图1b),与试管刷的结构极为类似。在关节滑动过程中,这些带电荷的刷型生物大分子会组装到软骨表面,并与水分子发生强相互作用,高度水化形成水合层[8-9],使关节软骨可以承受较大的法向载荷和剪切力,保持了关节软骨优异的润滑作用[10-11]

  • 受海葵刷状结构和天然滑液关节微观结构的启发,通过表面接枝聚合物分子刷,利用聚合物刷组分的灵活设计和结构的可逆调控,可以实现表面防污和关节润滑的功能模拟[12-14],引起了摩擦学、表面化学、生物材料等诸多领域研究者的广泛关注。聚合物刷是指接枝在基质表面或界面上具有较高接枝密度和一定链长的高分子链段的聚集体。由于接枝密度较高,且存在空间位阻和分子链排斥力,接枝的高分子链通常会垂直于基质表面,形成类似刷型的结构[15-16]。在表面或界面新长出的聚合物分子刷可以赋予表面多样化的拓扑结构和物理化学性质[17],从而达到显著的表面改性效果。材料的表面性能主要取决于高分子链自身的化学性质与结构组合,因此通过调控聚合物刷的构象行为和表面微观结构可以实现不同的功能,在海洋防污[18-19]、生物润滑[20-22]、生物传感器[23]和组织工程[24]等领域已显示出巨大的应用前景。

  • 图1 自然界中刷状微观结构[9]

  • Fig.1 Brush-like microstructures in nature [9]

  • 本文首先介绍了国内外表面引发聚合仿生聚合物刷的研究进展,重点对比和分析了零价金属介导的表面引发可控自由基聚合的适用性及特点,并总结了仿生聚合物刷在海洋防污领域的研究进展,最后阐述了目前仿生聚合物刷材料应用面临的机遇和挑战,并对未来仿生聚合物刷防污材料的发展方向和趋势进行了展望。

  • 1 仿生聚合物刷的制备方法

  • 表面接枝仿生聚合物刷是通过物理吸附或共价键作用将聚合物链的一端“接枝到表面”(Grafting to)或“从表面接枝”(Grafting from),与基底形成牢固的连接,并在基底表面形成一种高密度和一定厚度的大分子聚集体[25-27]。仿生聚合物刷的制备方法灵活多样。其中,表面引发聚合方法,即 Graft from 技术,是通过引发剂修饰后的表面直接引发单体原位聚合制备仿生聚合物刷,已成为高效合成和应用广泛的方法之一[28-32]。此外,表面引发聚合还可以通过控制和改变聚合物刷的化学结构[33-34],获得嵌段和无规共聚分子刷、厚度梯度分子刷、交联和自支撑分子刷以及各种支化型分子刷[35-38]。表面引发聚合主要包括:表面引发原子转移自由基聚合 (Surface-initiated atom transfer radical polymerization,SI-ATRP)[39-41]、表面引发可逆加成-断裂链转移聚合(Surface-induced reversible addition-fragmentation chain transfer,SI-RAFT)[42-43]、表面引发开环易位聚合( Surface-initiated ring-opening metathesis polymerization,SI-ROMP)[44]、表面引发光聚合 ( Surface-initiated photografting and photopolymerization,SI-PGP)[45-47]、表面引发零价金属介导可控自由基聚合( Surface-initiated zerovalent metal-mediated controlled radical polymerization,SI-MtCRP)等[48-51]。在各种表面引发聚合方法中,表面引发原子转移自由基聚合 (SI-ATRP)反应条件温和、操作简单、适用单体广、聚合过程高度可控,是目前高分子合成领域最常用的技术,可以实现对刷状聚合物薄膜的精确设计和可控合成,具有重要的研究意义和应用前景。

  • 1.1 表面引发原子转移自由基聚合(SI-ATRP)

  • 原子转移自由基聚合(ATRP)首次报道于 1995 年[52],随后,由于相对温和的反应条件,它已成为一种快速发展的技术,用于制备具有复杂和明确化学结构的聚合物[53]。ATRP 通常使用卤代烷作引发剂,过渡金属络合物(铜、铁、铱、钼等和有机配体配位)作催化剂用于卤素原子的载体。通过催化剂金属离子的氧化还原过程实现活性种和休眠种的可逆动态平衡,从而达到可控的聚合反应[54]。在 ATRP 过程中(图2),休眠种(Pn-X)通过一个可逆的氧化还原过程被激活,当 Pn-X 键断裂时,其产生一个碳链自由基(Pn*)并引发单体 M 聚合形成聚合物链自由基(Pn-Mm)。在这一活化过程中,单电子从过渡金属转移到卤素原子,生成高价金属卤化物(Mtm+1-X)。同时,Pn-Mm 也能从高价金属卤化物(Mtm+1-X)中重新获得卤素发生失活反应,形成 Pn-Mm-X 休眠种,再将高价金属卤化物还原为低价态[55-57]。ATRP 反应关键在于活性种的去活化速度(Kdeact)远大于活性种的形成速度(Kact),即在反应过程中通过这一平衡反应保持低浓度的聚合物自由基,从而降低双基终止反应发生概率,保持聚合物链端的“活性”再引发特征[57]。在这一反应体系中许多因素都将影响聚合反应的发生,例如:配体和金属催化剂的比例、配体类型、催化剂 Cu(Ⅰ)/ Cu(Ⅱ)浓度比、引发剂、溶剂等,同时这些因素也为调控聚合反应提供了多种可能。

  • 图2 ATRP 反应机理(Kact 为活化速率常数, Kdeact 为去活化速率常数,Kp为链增长速率常数, Kt 为链终止速率常数)[55]

  • Fig.2 Reaction scheme of the ATRP mechanism (Kact is rate constant of activation, Kdeact is rate constant of deactivation, Kp is rate constant of propagation, Kt is rate constant of termination) [55]

  • 利用 SI-ATRP 技术能够精准控制聚合物链的构象和拓扑结构,可以合成结构明确的均质、嵌段、图案、梯度聚合物以及有机 / 无机复合表面等。与其他表面引发可控聚合方法相比[58-59],SI-ATRP 具有诸多优势:① 聚合过程高度可控,聚合物刷的分子量和厚度随时间呈线性增加趋势[60];② 聚合反应条件相对温和,可适用单体种类广泛[61];③ 操作简便,可以在各种复杂表面设计制备聚合物刷,调控其化学组成和结构[62];④ 可以得到高接枝密度和窄分子量分布的聚合物刷[63];⑤ 可在某些生物相容的催化体系(水溶液或者缓冲溶液)中进行,如铁基 ATRP 适用于生物医学及药物应用等[64]。因此, SI-ATRP 被广泛用于制备各种功能性聚合物刷和先进高分子材料,具有重要的应用前景。

  • 1.2 表面引发零价金属介导可控自由基聚合(SI-Mt0 CRP)

  • 传统 SI-ATRP 存在单体消耗量大、使用金属盐催化剂、聚合反应效率低、需要严格的惰性环境等诸多问题,限制了其大面积制备和实际应用[64-66]。近年来,陆续发展了通过电化学、光化学、化学试剂等外界手段来调控和改进 SI-ATRP 的方法,例如电子转移再生活化剂 ATRP(ARGET ATRP)[67-68]、电化学介导 ATRP(eATRP)[69-70]、光介导 ATRP(PhotoATRP)[71-72]以及酶辅助 ATRP(Enzyme-assisted ATRP)[73]等。其中,表面引发零价金属介导可控自由基聚合(SI-Mt0 CRP)通过零价金属片直接做催化剂和还原剂源,能够在大气环境中温和试验条件下,无需复杂除氧操作,仅消耗少量单体实现大面积聚合物刷的高效可控制备,因而吸引了广泛关注[4974-80]。目前,零价金属介导的表面引发可控自由基聚合主要包括以下四种:零价铜介导、零价铁介导、零价锌介导以及零价锡介导的可控自由基聚合。

  • 1.2.1 表面引发零价铜介导可控自由基聚合

  • 表面引发零价铜介导的可控自由基聚合 SI-Cu0 CRP 最早于 2015 年由本课题组及合作者提出[49],该方法利用单质铜片 / 箔作为催化源和聚合反应装置的一部分(图3a),与引发剂修饰的基底之间形成 0.5 mm 限域空间,在预制反应溶液(只含有单体、配体和溶剂)的作用下促使高活性铜离子从铜片/箔表面不断离解出来,并迅速迁移到基底表面催化引发聚合反应。这一创新设计使 SI-Cu0 CRP 聚合无需隔绝空气或复杂除氧操作,同时单体和溶剂消耗量减少 90%以上,具有很好的反应速率和末端活性,并且通过调节铜片和基底之间的距离,可以简易构筑具有多种复杂结构的聚合物刷材料[49]。借助于聚合装置的空间限域效应,该方法相比传统铜盐或铜线催化的聚合反应具有极快的聚合速率(图3b) [74], NIPAM 聚合 1 h 后的厚度达到了 113±8 nm。而 PNIPAM 的接枝密度(0.81~0.85 chains·nm−2)也显著高于传统 SI-ATRP 所制备的聚合物刷(0.61 chains·nm−2[49]。此外,这些铜离子不仅是高活性的催化剂,而且是非常高效的除氧剂。这些铜离子能够源源不断的从铜片表面迁移到基底表面[50],因此,即使溶液没有除氧,该反应也能够顺利进行。将整个装置放在空气中,边缘的铜片解离出的铜离子也能有效阻挡氧气分子进入。这表明在 SI-Cu0 CRP 制备亲水性聚合物刷时,不需要反应容器,聚合溶液不需要除氧也不需要加温,因此该方法在大面积基底上制备聚合物刷有巨大的应用潜力。

  • 对于疏水单体的聚合,一般需要在有机溶剂中进行,效率较低,而且单体溶液需要严格除氧。为了解决这一问题,我们及合作者借鉴了有机反应中的“On water”效应,报道了一种在无需除氧或惰性环境下聚合疏水单体的 SI-Cu0 CRP 方法[75]。该方法将疏水的(甲基)丙烯酸酯类单体和水溶液高速搅拌一定时间,然后静置得到分层溶液。进一步提取下层溶解非常微量的疏水单体的水溶液(图3c) 进行 SI-Cu0 CRP 反应,与有机溶剂为反应体系相比,聚合速率显著提高,最高可达 462 nm·h−1。在 “On water”SI-Cu0 CRP 中,单体溶液无需除氧,用量也减少至少 90%以上,而且适用于各种不溶于水的(甲基)丙烯酸酯类单体(图3d)。通过该方法制备的聚合物刷也具有很的高末端活性和接枝密度,可以连续进行十次再引发聚合制备得到十嵌段分子刷。

  • 图3 表面引发零价铜介导可控自由基聚合(SI-Cu0 CRP)[4974-75]

  • Fig.3 Surface-initiated Cu0-mediated controlled radical polymerization (SI-Cu0 CRP) [4974-75]

  • 1.2.2 表面引发零价铁介导可控自由基聚合

  • 在 SI-Cu0 CRP 反应中,零价金属铜箔 / 片为催化剂会导致聚合物刷及聚合溶液中铜离子积累,限制了其在生物医学领域的应用。为了解决这个关键问题,BENETTI 及其合作者提出了表面引发零价铁介导可控自由基聚合(SI-Fe0 ATRP)[48]。该方法使用零价铁作催化剂及还原剂,能够在有机体系或者水溶液中,无需复杂除氧操作或惰性环境高效生长多种聚合物刷薄膜。利用该方法制备聚[2-甲基丙烯酰氧乙基磷酰胆碱](PMPC)薄膜,聚合 30 min 后厚度达到 200 nm,接枝密度为 0.23 chains·nm−2,具有良好的可控聚合特性。由于铁元素的细胞相容性,SI-Fe0 ATRP 技术可应用于细胞培养,其能够动态地改变基底对细胞的亲和力,而不会影响细胞的生存能力。因此,该方法在调节生物材料或组织工程结构中细胞微环境的物理化学性质具有重要意义。

  • 然而,铁基催化剂的低活性限制了其应用前景。在无外加铁盐的条件下,经过几个小时的聚合反应也只能达到十几纳米的厚度,需要外加铁盐来加速零价铁解离出活性铁基催化剂物质,从而加快聚合物刷的生长速率。我们利用海水中无机盐对铁片增强的腐蚀作用[81],开发了海水作溶剂促进单质铁介导的表面引发可控自由基聚合技术(图4a)。与去离子水做溶剂时没有聚合物刷生成相比,使用海水促进的 SI-Fe0 ATRP 技术能够在有氧条件下以极快的聚合速率,将一系列常见单体转化成均匀的聚合物刷(聚合 30 min 可达~951 nm),而且使用极少量的单体(μL)也能成功实现聚合。并进一步研究了不同种类及浓度的无机盐对 SI-Fe0 ATRP 的促进作用(图4b)。结果表明,盐浓度低于 100 mM 时对聚合反应已经有明显的促进作用,此外,二价阴离子相对一价阴离子有更强的促进作用(图4c)。

  • 图4 海水增强 SI-Fe0 ATRP [81]

  • Fig.4 Seawater boosted SI-Fe0 ATRP [81]

  • 1.2.3 表面引发零价锌介导可控自由基聚合

  • 表面引发零价锌介导的可控自由基聚合 (SI-Zn0 ATRP)最早由 ZHOU 及其合作者在 2013 年提出[76],这种方法利用牺牲阳极表面引发原子转移自由聚合。在预制聚合溶液中加入二价铜盐络合物,零价活泼金属锌片 / 箔将二价铜还原为一价铜进而扩散到基底表面引发聚合反应。通过改变锌片的形状和引发剂基底的间距可以实现不同厚度和梯度以及图案化聚合物刷的制备。2020 年,BENETTI 及其合作者在此基础上进一步探究了 SI-Zn0 ATRP 方法的机理及应用(图5)[51]。结果表明,当聚合体系中存在铜盐时,零价锌在联吡啶配体作用下将 CuII/L 持续不断地还原为 CuI /L,从而高效引发聚合。而在无外加铜盐条件下,Zn0 /L 仍可以触发氧化还原引发的自由基聚合过程,实现聚合物刷的生长,并且该工作还实现了三维织物(棉制品)的聚合物刷改性应用。

  • 图5 SI-Zn0 ATRP 的反应示意图 [51]

  • Fig.5 Reaction scheme for SI-Zn0 ATRP [51]

  • 1.2.4 表面引发零价锡介导可控自由基聚合

  • 经典 ATRP 反应体系以烷基卤化物(RX)为引发剂,低价态过渡金属卤化物(常用 CuBr)结合配体(常用 2,2-联二吡啶)形成的络合物为催化剂,在活性种和休眠钟之间建立了可逆的原子转移平衡,从而确保自由基浓度足够低,以抑制自由基之间结合而引起的终止,因而可以实现活性聚合[57]。但传统 SI-ATRP 中广泛使用过渡金属 Cu(I)、Ru(II)等作催化剂,反应具有生物毒性,严重制约了高分子刷在生物医学等领域的广泛应用。

  • 锡(Sn)是一种环境友好、价格优廉的金属元素,其作为食物容器被大量使用,可追溯到公元前 3000 年,现在仍然作为包装材料在广泛使用。此外,作为人体必需的微量元素,锡具有优异的本征生物相容性,对组织器官没有排斥作用[82]。受中国古代锡器的启发,我们设计并系统研究了锡单质介导表面引发可控自由基聚合(SI-Sn0 CRP)方法[83]。在 SI-Sn0 CRP 中(图6),单质锡在平面基底表面创造出二维限域空间,促使高活性锡离子不断从锡表面解离出来,并迅速迁移到基底表面催化聚合反应。通过该聚合方法,使用极少量的单体及配体,便可在室温环境下高效制备不同结构(均质、嵌段、图案化、晶圆级)及湿润性可调的聚合物刷。更重要的是,锡本身固有的生物相容性使得聚合物刷具有优异的血液(图6b)及细胞相容性(图6c、6d)。SI-Sn0 CRP 极大程度解决了传统聚合物分子刷制备过程生物毒性高的问题,为生物相容性仿生聚合物刷的制备及其在润滑和生物防污领域的应用提供了新的思路和方法。

  • 图6 表面引发零价锡介导可控自由基聚合(SI-Sn0 CRP)[83]

  • Fig.6 Surface-initiated Sn0-mediated controlled radical polymerization (SI-Sn0 CRP) [83]

  • 2 仿生聚合物刷在海洋防污领域的应用

  • 随着新型高效的聚合物刷合成技术和机理的不断发展,表面接枝聚合物刷已经成为调控界面物理化学性质的重要方法之一。具有明确物理构象、接枝密度以及化学组成的仿生聚合物刷材料,可实现抗菌、抗生物粘附、分子识别等功能特性,在海洋防污、生物医学等领域具有广泛的应用前景。相比于传统制备防污表面的方法(如物理吸附法、自组装法等)[4],表面接枝聚合物刷从根本上解决了传统改性手段的缺陷,并可以极大提高固体材料表面的功能基团密度,显著增强涂层的机械、力学性能和化学稳定性。目前,仿生聚合物刷基海洋防污材料主要可以分为亲水型聚合物刷涂层和疏水复合型聚合物刷涂层等两类。

  • 2.1 亲水型聚合物刷涂层

  • 2.1.1 中性聚合物刷

  • 聚乙二醇(PEG)[84]和寡聚聚乙二醇(OEG)[85] 等是最早被广泛研究的亲水型聚合物,其分子结构中通常含有极性基团,当处于水环境时,表面易与水分子形成致密水合层[86]。同时,聚合物刷的长分子链和侧链具有空间位阻,可以有效抵御蛋白质等生物大分子的粘附[87],实现良好的防污性能。而环状聚合物刷的接枝密度更致密,空间稳定性更强,其抗生物污染能力和润滑性能均优于线性聚合物刷[88]。但单组分亲水型聚合物刷改性的防污表面往往生物活性较差,在海洋防污领域中应用受到极大限制。为此,SHIN等[89]制备了一种邻苯二酚官能化的PEG 嵌段共聚物作为改性材料表面的涂层。邻苯二酚的嵌入使 PEG 可以任意接枝到亲水性或疏水性基底上,从而具有强空间排斥力和增强表面的抗生物(细胞和蛋白)污损性能。SU 等[90]受鱼皮粘液特殊性能的启发,提出了一种合理制备抗生物污损表面的通用策略,并在塑料和弹性体上获得了分级梳状亲水聚合物刷(HCPBs)表面。结果表明,塑料基底表面接枝 PAA(聚丙烯酸)-g-PEG(聚乙二醇)后表现出优异的亲水性和水下疏油性,并且在水中表现出最优异的润滑性(摩擦因数<0.005)和减阻性能(图7a),这归因于塑料表面的纳米结构和分层梳状亲水聚合物刷(HCHPB)的协同作用。此外,与原始基底相比,改性后表面显示出优异且长效的抗生物粘附和实海防污性能。ZHOU 等[91]通过两步表面引发原子转移自由基聚合(SI-ATRP)制备了一系列具有可控分级结构的嵌段低聚(乙二醇)甲基丙烯酸酯-b-甲基丙烯酸缩水甘油酯刷 (POEMGA-b-PGMA),并进一步通过改变引发剂浓度和聚合时间,实现了对聚合物刷结构的调控和优化(图7b)。利用表面等离子体共振(SPR)研究发现,随着初级层中 POEGMA 单体链长的增大,双层聚合物刷可以同时增强聚合物刷与生物分子之间的结合信号(35.8%)和防污性能(图7c)。这主要归功于密集堆积的保护性初级层和空间位阻最小化的次级层的形成,有效抵御了非特异性蛋白的物理吸附。

  • 图7 中性聚合物刷防污材料[90-91]

  • Fig.7 Neutral polymer brush based antifouling materials[90-91]

  • 2.1.2 两性离子聚合物刷

  • 两性离子聚合物是一类分子链中含有丰富的正负电荷官能团和较大偶极矩的高分子[92]。与 PEG 及其他非离子亲水性聚合物相比,两性离子聚合物的静电诱导水合作用更为明显,可以通过离子溶剂化和氢键水合作用形成更为致密的水化层[93],抗生物黏附性能更好,并具有优异的生物相容性和易功能化修饰等特性。

  • 根据离子的种类,两性离子聚合物可分为聚磺基甜菜碱(polySB)、聚羧基甜菜碱(polyCB)和聚磷酰胆碱(polyPC)等。ANDEL 等[94]系统比较了三类两性离子表面聚合物刷的防污能力,发现 polyCB 和 polyPC 薄膜的防污性能更优异。LADD 等[95]测试发现甲基丙烯酸甜菜碱酯聚合物刷 (PCBMA)修饰的金表面在 100%的血浆中只有 5 ng / cm2 的蛋白质粘附。而 YANG 等[96]证明,当 PCBMA 刷厚度调控为约 20 nm 时,蛋白质的吸附量小于 0.3 ng / cm2,表现出优异的抗生物粘附性能。 CHANG 等[97]研究表明,聚甲基丙烯酰乙基磺基甜菜碱刷(PSBMA)改性后的表面具有良好的血液相容性。同时,聚合物刷的表面接枝密度也与蛋白黏附行为有着密切关系,而增大 PSBMA 刷的厚度会增强聚合物刷表面水化层的作用,PSBMA 刷的分子链构象更为舒展,从而提高了其防污性能。

  • WANG 等[98]通过表面引发光聚合,构建了聚甲基丙烯酸磺基甜菜碱(PSBMA)为底层,聚 N-异丙基丙烯酰胺(PNIPAM)和万古霉素(Van)共聚物为上层的温度驱动自适应性防污表面(图8a)。在低于下临界温度(LCST)的室温下,上层热响应的 PNIPAM 链伸展,Van 杀死表面接触的细菌。当在生理温度(高于 LCST)以下时,PNIPAM 刷层折叠,底层 PSBMA 刷显露出来,可同时在细菌抑制、抗细菌黏附和生物相容性方面表现出显著的性能(图8b)。LIU 等[99]采用亚表面引发的原子转移自由基聚合(SSI-ATRP),在树脂基体上制备了具有结构化的聚合物刷表面。生物污损测试结果表明,甲基丙烯酸 3-磺丙基钾盐(SPMA)聚合物刷的盐响应性会阻碍其优异的防污性能。当海水中盐(如 Ca2+或 Mg2+)浓度较高时会阻碍其水化层的作用,进一步减弱防污性能。而两性离子聚合物(甲基丙烯酸磺基甜菜碱,SBMA)在高盐浓度下仍然表现出优异的防污性能,与水分子产生的离子键比其他亲水性材料更稳定。45 d 的南海挂板试验表明(图8c),结构化的两性离子和阴离子共聚物刷在海洋高盐浓度介质下实现了理想的稳定性和长期防污效果,在海洋防污领域显示出潜在的应用前景。

  • 图8 两性离子聚合物刷防污材料[98-99]

  • Fig.8 Zwitterionic polymer brush based antifouling materials[98-99]

  • 2.2 疏水复合型聚合物刷涂层

  • 尽管仿生聚合物刷与水分子之间的水合作用可以抵御蛋白、细菌以及藻类等污损生物的粘附,但仿生聚合物刷层厚度通常为纳米级,在苛刻复杂环境下极易被破坏失效,稳定性较差,防污期效短。受冰表面准液态润滑层的启发,我们通过表面引发零价铜介导可控自由基聚合(SI-Cu0 CRP)在表面接枝了 PGMA 刷涂层[100],并利用聚合物刷与低表面能分子间偶极-偶极相互作用(图9a),在各种软和硬基底(玻璃、金属、硅片、塑料等)上制备了仿冰超润滑涂层(II-PSS),对各种不同表面张力 (22.3~72.8 mN·m−1)的液体均具有优异的排斥性。由于聚合物刷层和全氟聚醚(PFPE)之间的强相互作用,超滑表面表现出优异的机械耐久性和化学稳定性,可抵抗连续水滴冲击和剪切旋转,以及耐海水浸泡和耐酸或碱腐蚀(pH=1~14)。此外,该超滑表面对各种污染物、蛋白质、海洋藻类和贻贝均具有出色的抗生物粘附性能,20 d 后藻类生长覆盖率小于 2%(图9b、9c),表现出长效的海洋防污性能。YARBROUGH 等[101]通过在玻璃基底上面修饰全氟取代聚氧乙烯寡聚物(聚甲基丙烯酸甲酯-co-甲基丙烯酸缩水甘油酯-co-全氟聚氧乙烯)刷,构筑了一系列含氟聚合物刷。防污试验研究表明,该类涂层对孢子微生物的释放率高达 90%,其主要是低表面能全氟氧乙烯的官能团能够有效富集在玻璃基底表面,赋予材料污染释放特性,达到很好的抗蛋白吸附效果。YUE 等[102]将聚二甲基硅氧烷 (PDMS)分子刷接枝到微弧氧化多孔表面上,进一步灌注润滑剂(硅油)获得了超滑防污表面。gPDMS 分子刷与硅油具有更强的化学亲和力,赋予了 gSLIPS 优异的稳定性、耐用性和机械坚固性。同时, gSLIPS 具有比 TA2 和 gPDMS 更优异的抗生物污损性能(图9d)。浸泡 14 d 后,小球藻在 gSLIPS 上的覆盖率为 0.067%±0.022%,与 TA2 和 gPDMS 相比分别降低了 98.8%和 95.6%(图9e)。此外,gSLIPS 还具有优异的抗蛋白性能,在海洋防污领域具有巨大的应用潜力。

  • 图9 疏水复合型聚合物刷防污材料[100102]

  • Fig.9 Hydrophobic composite polymer brush based antifouling materials[100102]

  • 3 结论与展望

  • 仿生聚合物刷作为一种可以在基底上引入多种功能基团的表界面修饰方法,在海洋防污领域显示出广阔的应用潜力。零价金属介导的表面引发可控自由基聚合(SI-Mt0 CRP)是一种简单有效的制备仿生聚合物刷的方法,适用于多种基底和单体,制备的聚合物刷厚度可控,功能可调。这类方法避免了复杂冗长的除氧步骤,能够在大气环境下直接实现大面积聚合物刷的制备,为聚合物刷将来的工业化应用道路提供了可能的制备策略。目前,已经实现了对多种常规单体的成功聚合,但对于环状单体,例如苯乙烯、4-乙烯基吡啶等,以及含氟类单体聚合效率较低,该类型单体在超润湿防污材料领域有广泛的应用潜力,因此后续对于这种活性低的功能性单体聚合方法开发是需要解决的问题。虽然聚合物刷表面拓扑结构和物理化学特性调控以及在生物医学和海洋防污等方面的性能研究工作已大量开展,并且展现了良好的应用效果。但仿生聚合物刷表面的生物防污性能受接枝密度、链长度、官能团和化学组成等多重因素影响,在海洋防污性能和机理方面需要更加详尽的探索。此外,针对实际海洋复杂多变的环境,如何实现在防污涂层中的大规模应用,增强与涂层表面的结合力,以及提高聚合物刷涂层的机械耐久性和化学稳定性,是仿生聚合物刷材料在实际海洋防污应用中所需解决的重要问题。

  • 参考文献

    • [1]JIN H,TIAN L,BING W,et al.Bioinspired marine antifouling coatings:status,prospects,and future[J].Progress in Materials Science,2022,124:100889.

    • [2]QIU H,FENG K,GAPEEVA A,et al.Functional polymer materials for modern marine biofouling control[J].Progress in Polymer Science,2022,127:101516.

    • [3]贺小燕,白秀琴,袁成清,等.纳米复合海洋防污涂料研究进展[J].中国表面工程,2023,36(5):37-51.HE Xiaoyan,BAI Xiuqin,YUAN Chengqing,et al.Research progress of nanomaterial-based coatings for marine antifouling applications[J].China Surface Engineering,2023,36(5):37-51.(in Chinese)

    • [4]闻小虎,潘景龙,高多龙,等.海洋防污涂层的抗污机制及制备策略研究进展[J].表面技术,2023,52(11):171-181.WEN Xiaohu,PAN Jinglong,GAO Duolong,et al.Review on mechanism and preparation strategy of advanced anti-fouling coatings[J].Surface Technology,2023,52(11):171-181.(in Chinese)

    • [5]ASHA A B,CHEN Y,NARAIN R.Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering[J].Chemical Society Reviews,2021,50(20):11668-11683.

    • [6]赵文杰,陈子飞,莫梦婷,等.绿色海洋防污材料的表面构筑研究进展[J].中国表面工程,2014,27(5):14-31.ZHAO Wenjie,CHEN Zifei,MO Mengting,et al.Progress in surface tailoring for enviroment-friendly antibiofouling materials[J].China Surface Engineering,2014,27(5):14-31.(in Chinese)

    • [7]LEE S,SPENCER N D.Sweet,hairy,soft,and slippery[J].Science,2008,319(5863):575-576.

    • [8]CROCKETT R.Boundary lubrication in natural articular joints[J].Tribology Letters,2009,35(2):77-84.

    • [9]KLEIN J.Repair or replacement-a joint perspective[J].Science,2009,323(5910):47-48.

    • [10]刘国强,郭文清,刘志鲁,等.聚合物仿生润滑剂研究进展[J].摩擦学学报,2015,35(1):108-120.LIU Guoqiang,GUO Wenqing,LIU Zhilu,et al.Research pogress on polymer-based biomimetic lubricants[J].Tribology,2015,35(1):108-120.(in Chinese)

    • [11]LIU P,LIU Y,YANG Y,et al.Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage[J].Langmuir,2014,30(13):3811-3816.

    • [12]魏强兵,蔡美荣,周峰.表面接枝聚合物刷与仿生水润滑研究进展 [J].高分子学报,2012(10):1102-1107.WEI Qiangbing,CAI Meirong,ZHOU Feng.Progress on surface grafted polymer brushes for biomimetic lubrication[J].Acta Polymerica Sinica,2012(10):1102-1107.(in Chinese)

    • [13]MCNARY S M,ATHANASIOU K A,REDDI A H.Engineering lubrication in articular cartilage[J].Tissue Engineering Part B:Reviews,2012,18(2):88-100.

    • [14]BARBEY R,LAVANANT L,PARIPOVIC D,et al.Polymer brushes via surface-initiated controlled radical polymerization:synthesis,characterization,properties,and applications[J].Chemical Reviews,2009,109(11):5437-5527.

    • [15]CHEN W L,CORDERO R,TRAN H,et al.50th anniversary perspective:polymer brushes:novel surfaces for future materials[J].Macromolecules,2017,50(11):4089-4113.

    • [16]FENG C,LI Y,YANG D,et al.Well-defined graft copolymers:from controlled synthesis to multipurpose applications[J].Chemical Society Reviews,2011,40(3):1282-1295.

    • [17]POELMA J E,FORS B P,MEYERS G F,et al.Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization[J].Angewandte Chemie International Edition,2013,52(27):6844-6848.

    • [18]XIA Y,ADIBIA V,HUANG R,et al.Biomimetic bottlebrush polymer coatings for fabrication of ultralow fouling surfaces[J].Angewandte Chemie,2019,131(5):1322-1328.

    • [19]KO Y,TRUONG V K,WOO S Y,et al.Counterpropagating gradients of antibacterial and antifouling polymer brushes[J].Biomacromolecules,2021,23(1):424-430.

    • [20]LIU Y,WU Y,ZHOU F.Shear-stable polymer brush surfaces[J].Langmuir,2022,39(1):37-44.

    • [21]YU J,JACKSON N E,XU X,et al.Multivalent counterions diminish the lubricity of polyelectrolyte brushes[J].Science,2018,360(6396):1434-1438.

    • [22]ADIBNIA V,MIRBAGHERI M,FAIVRE J,et al.Bioinspired polymers for lubrication and wear resistance[J].Progress in Polymer Science,2020,110:101298.

    • [23]KRISHNAMOORTHY M,HAKOBYAN S,RAMSTEDT M,et al.Surface-initiated polymer brushes in the biomedical field:applications in membrane science,biosensing,cell culture,regenerative medicine and antibacterial coatings[J].Chemical Reviews,2014,114(21):10976-11026.

    • [24]NIU J,LUNN D J,PUSULURI A,et al.Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization[J].Nature Chemistry,2017,9(6):537-545.

    • [25]MILNER S T.Polymer brushes[J].Science,1991,251:905-914.

    • [26]WANG R,WEI Q,SHENG W,et al.Driving polymer brushes from synthesis to functioning[J].Angewandte Chemie International Edition,2023,62(27):e202219312.

    • [27]李晓菊,刘霞,崔树勋.表面接枝仿生聚合物刷的润滑性能研究进展[J].中国表面工程,2023,35(6):26-38.LI Xiaoju,LIU Xia,CUI Shuxun.Research progress on the lubrication properties of surface-grafted biomimetic polymer brushes[J].China Surface Engineering,2023,35(6):26-38.(in Chinese)

    • [28]ZOPPE J O,ATAMAN N C,MOCNY P,et al.Surface-initiated controlled radical polymerization:state-of-the-art,opportunities,and challenges in surface and interface engineering with polymer brushes[J].Chemical Reviews,2017,117(3):1105-1318.

    • [29]EDMONDSON S,OSBORNE V L,HUCK W T.Polymer brushes via surface-initiated polymerizations[J].Chemical Society Reviews,2004,33(1):14-22.

    • [30]TAWALBEH M,ALJAGHOUBl H,QASIM M,et al.Surface modification techniques of membranes to improve their antifouling characteristics:recent advancements and developments[J].Frontiers of Chemical Science and Engineering,2023,17(12):1837-1865.

    • [31]MA S,ZHANG X,YU B,et al.Brushing up functional materials[J].NPG Asia Materials,2019,11(1):24-36.

    • [32]LI B,YU B,YE Q,et al.Tapping the potential of polymer brushes through synthesis[J].Accounts of Chemical Research,2015,48(2):229-237.

    • [33]LEE H J,NAKAYAMA Y,MATSUDA T.Spatio-resolved,macromolecular architectural surface:highly branched graft polymer via photochemically driven quasiliving polymerization technique[J].Macromolecules,1999,32(21):6989-6995.

    • [34]TUGULU S,KLOK H A.Stability and nonfouling properties of poly(poly(ethylene glycol)methacrylate)brushes under cell culture conditions[J].Biomacromolecules,2008,9(3):906-912.

    • [35]MANDAL T K,FLEMING M S,WALT D R.Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates[J].Chemistry of Materials,2000,12(11):3481-3487.

    • [36]FRECHET J M,HENMI M,GITSOV I,et al.Self-condensing vinyl polymerization:an approach to dendritic materials[J].Science,1995,269(5227):1080-1083.

    • [37]XU C,BARNES S E,WU T,et al.Solution and surface composition gradients via microfluidic confinement:fabrication of a statistical-copolymer-brush composition gradient[J].Advanced Materials,2006,18(11):1427-1430.

    • [38]HARRIS B P,METTERS A T.Generation and characterization of photopolymerized polymer brush gradients[J].Macromolecules,2006,39(8):2764-2772.

    • [39]ZHOU F,ZHENG Z,YU B,et al.Multicomponent polymer brushes[J].Journal of the American Chemical Society,2006,128(50):16253-16258.

    • [40]HUANG X,WIRTH M J.Surface-initiated radical polymerization on porous silica[J].Analytical Chemistry,1997,69(22):4577-4580.

    • [41]HUI C M,PIETRASIK J,SCHMITT M,et al.Surface-initiated polymerization as an enabling tool for multifunctional(nano-)engineered hybrid materials[J].Chemistry of Materials,2014,26(1):745-762.

    • [42]BAUM M,BRITTAIN W J.Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique[J].Macromolecules,2002,35(3):610-615.

    • [43]LI C,BENICEWICZ B C.Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization[J].Macromolecules,2005,38(14):5929-5936.

    • [44]YE Q,WANG X,LI S,et al.Surface-initiated ring-opening metathesis polymerization of pentadecafluorooctyl-5-norbornene-2-carboxylate from variable substrates modified with sticky biomimic initiator[J].Macromolecules,2010,43(13):5554-5560.

    • [45]WANG H,BROWN H R.Self-initiated photopolymerization and photografting of acrylic monomers[J].Macromolecular Rapid Communications,2004,25(11):1095-1099.

    • [46]SHENG W,LI B,WANG X,et al.Brushing up from “anywhere” under sunlight:a universal surface-initiated polymerization from polydopamine-coated surfaces[J].Chemical Science,2015,6(3):2068-2073.

    • [47]STEENACKERS M,LUD S Q,NIEDERMEIER M,et al.Structured polymer grafts on diamond[J].Journal of the American Chemical Society,2007,129(50):15655-15661.

    • [48]LAYADI A,KESSEL B,YAN W,et al.Oxygen tolerant and cytocompatible Iron(0)-mediated ATRP enables the controlled growth of polymer brushes from mammalian cell cultures[J].Journal of the American Chemical Society,2020,142(6):3158-3164.

    • [49]ZHANG T,DU Y,MÜLLER F,et al.Surface-initiated Cu(0)mediated controlled radical polymerization(SI-CuCRP)using a copper plate[J].Polymer Chemistry,2015,6(14):2726-2733.

    • [50]ZHANG T,DU Y,KALBACOVA J,et al.Wafer-scale synthesis of defined polymer brushes under ambient conditions[J].Polymer Chemistry,2015,6(47):8176-8183.

    • [51]ALBERS R F,YAN W,ROMIO M,et al.Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate[J].Polymer Chemistry,2020,11(44):7009-7014.

    • [52]WANG J S,MATYJASZEWSKI K.Controlled/“living” radical polymerization.atom transfer radical polymerization in the presence of transition-metal complexes[J].Journal of the American Chemical Society,1995,117(20):5614-5615.

    • [53]KATO M,KAMIGAITO M,SAWAMOTO M,et al.Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide)initiating system:possibility of living radical polymerization[J].Macromolecules,1995,28(5):1721-1723.

    • [54]TRUONG N P,JONES G R,BRADFORD K G E,et al.A comparison of RAFT and ATRP methods for controlled radical polymerization[J].Nature Reviews Chemistry,2021,5(12):859-869.

    • [55]MATYJASZEWSKI K.Advanced materials by atom transfer radical polymerization[J].Advanced Materials,2018,30(23):1706441.

    • [56]DWORAKOWSKA S,LORANDI F,GORCZYNSKI A,et al.Toward green atom transfer radical polymerization:current status and future challenges[J].Advanced Science,2022,9(19):2106076.

    • [57]LORANDI F,FANTIN M,MATYJASZEWSKI K.Atom transfer radical polymerization:a mechanistic perspective[J].Journal of the American Chemical Society,2022,144(34):15413-15430.

    • [58]HUECKEL T,LUO X,ALY O F,et al.Nanoparticle brushes:macromolecular ligands for materials synthesis[J].Accounts of Chemical Research,2023,56(14):1931-1941.

    • [59]SHEIKO S S,SUMERLIN B S,MATYJASZEWSKI K.Cylindrical molecular brushes:synthesis,characterization,and properties[J].Progress in Polymer Science,2008,33(7):759-785.

    • [60]PYUN J,KOWALEWSKI T,MATYJASZEWSKI K.Synthesis of polymer brushes using atom transfer radical polymerization[J].Macromolecular Rapid Communications,2003,24(18):1043-1059.

    • [61]ZOPPE J O,ATAMAN N C,MOCNY P,et al.Surface-initiated controlled radical polymerization:state-of-the-art,opportunities,and challenges in surface and interface engineering with polymer brushes[J].Chemical Reviews,2017,117(3):1105-1318.

    • [62]XIAO P,GU J,CHEN J,et al.A microcontact printing induced supramolecular self-assembled photoactive surface for patterning polymer brushes[J].Chemical Communications,2013,49(95):11167-11169.

    • [63]FENG C,HUANG X.Polymer brushes:efficient synthesis and applications[J].Accounts of Chemical Research,2018,51(9):2314-2323.

    • [64]POLI R,ALLAN L E N,SHAVER M P.Iron-mediated reversible deactivation controlled radical polymerization[J].Progress in Polymer Science,2014,39(10):1827-1845.

    • [65]WU D,LI W,ZHANG T.Surface-initiated zerovalent metal-mediated controlled radical polymerization(SI-Mt0 CRP)for brush engineering[J].Accounts of Chemical Research,2023,56(17):2329-2340.

    • [66]SZCZEPANIAK G,FU L,JAFARI H,et al.Making ATRP more practical:oxygen tolerance[J].Accounts of Chemical Research,2021,54(7):1779-1790.

    • [67]SIMAKOVA A,AVERICK S E,KONKOLEWICZ D,et al.Aqueous ARGET ATRP[J].Macromolecules,2012,45(16):6371-6379.

    • [68]MIN K,JAKUBOWSKI W,MATYJASZEWSKI K.AGET ATRP in the presence of air in miniemulsion and in bulk[J].Macromolecular Rapid Communications,2006,27(8):594-598.

    • [69]MAGENAU A J D,STRANDWITZ N C,GENNARO A,et al.Electrochemically mediated atom transfer radical polymerization[J].Science,2011,332:81-84.

    • [70]LI B,YU B,HUCK W T,et al.Electrochemically induced surface-initiated atom-transfer radical polymerization[J].Angewandte Chemie International Edition,2012,51:5092-5095.

    • [71]BUSS B L,MIYAKE G M.Photoinduced controlled radical polymerizations performed in flow:methods,products,and opportunities[J].Chemistry of Materials,2018,30(12):3931-3942.

    • [72]PAN X,TASDELEN M A,LAUN J,et al.Photomediated controlled radical polymerization[J].Progress in Polymer Science,2016,62:73-125.

    • [73]WANG Y,FU L,MATYJASZEWSKI K.Enzymedeoxygenated low parts per million atom transfer radical polymerization in miniemulsion and ab initio emulsion[J].ACS Macro Letters,2018,7(11):1317-1321.

    • [74]ZHANG T,BENETTI E M,JORDAN R.Surface-initiated Cu(0)-mediated CRP for the rapid and controlled synthesis of quasi-3D structured polymer brushes[J].ACS Macro Letters,2019,8(2):145-153.

    • [75]CHE Y,ZHANG T,DU Y,et al.“On Water” surfaceinitiated polymerization of hydrophobic monomers[J].Angewandte Chemie International Edition,2018,57(50):16380-16384.

    • [76]YAN J,LI B,YU B,et al.Controlled polymer-brush growth from microliter volumes using sacrificial-anode atom-transfer radical polymerization[J].Angewandte Chemie International Edition,2013,52(35):9125-9129.

    • [77]YIN X,WU D,YANG H,et al.Galvanic-replacementassisted surface-initiated atom transfer radical polymerization for functional polymer brush engineering[J].ACS Macro Letters,2022,11:296-302.

    • [78]PARKATZIDIS K,WANG H S,TRUONG N P,et al.Recent developments and future challenges in controlled radical polymerization:a 2020 update[J].Chem,2020,6(7):1575-1588.

    • [79]BOYER C,CORRIGAN N A,JUNG K,et al.Copper-mediated living radical polymerization(atom transfer radical polymerization and copper(0)mediated polymerization):from fundamentals to bioapplications[J].Chemical Reviews,2016,116(4):1803-1949.

    • [80]WANG W,ZHAO J,ZHOU N,et al.Reversible deactivation radical polymerization in the presence of zero-valent metals:from components to precise polymerization[J].Polymer Chemistry,2014,5(11):3533-3546.

    • [81]YIN X,WU D,YANG H,et al.Seawater-boosting surface-initiated atom transfer radical polymerization for functional polymer brush engineering[J].ACS Macro Letters,2022,11(5):693-698.

    • [82]OUYANG J,ZHANG L,LI L,et al.Cryogenic exfoliation of 2D stanene nanosheets for cancer theranostics[J].Nano-Micro Letters,2021,13:1-18.

    • [83]WU D,YIN X,ZHAO Y,et al.Tinware-inspired aerobic surface-initiated controlled radical polymerization(SI-Sn0 CRP)for biocompatible surface engineering[J].ACS Macro Letters,2022,12(1):71-76.

    • [84]LOWE S,O’BRIEN-SIMPSON N M,CONNAL L A.Antibiofouling polymer interfaces:poly(ethylene glycol)and other promising candidates[J].Polymer Chemistry,2015,6(2):198-212.

    • [85]MAAN A M C,HOFMAN A H,PELRAS T,et al.Toward effective and adsorption-based antifouling zipper brushes:effect of pH,salt,and polymer design[J].ACS Applied Polymer Materials,2023,5(10):7968-7981.

    • [86]CHEN S,LI L,ZHAO C,et al.Surface hydration:principles and applications toward low-fouling/nonfouling biomaterials[J].Polymer,2010,51(23):5283-5293.

    • [87]WANG H,ZHANG Z,CHEN J,et al.Conformation-dominated surface antifouling and aqueous lubrication[J].Colloids and Surfaces B:Biointerfaces,2022,214:112452.

    • [88]MORGESE G,TRACHSEL L,ROMIO M,et al.Topological polymer chemistry enters surface science:linear versus cyclic polymer brushes[J].Angewandte Chemie International Edition,2016,55(50):15583-15588.

    • [89]SHIN E,LIM C,KANG U J,et al.Mussel-inspired copolyether loop with superior antifouling behavior[J].Macromolecules,2020,53(9):3551-3562.

    • [90]SU X,HAO D,LI Z,et al.Design of hierarchical comb hydrophilic polymer brush(HCHPB)surfaces inspired by fish mucus for anti-biofouling[J].Journal of Materials Chemistry B,2019,7(8):1322-1332.

    • [91]ZHOU W,YANG M,ZHAO Z,et al.Controlled hierarchical architecture in poly [oligo(ethylene glycol)methacrylate-b-glycidyl methacrylate] brushes for enhanced label-free biosensing[J].Applied Surface Science,2018,450:236-243.

    • [92]LOWE A B,MCCORMICK C L.Synthesis and solution properties of zwitterionic polymers[J].Chemical Reviews,2002,102(11):4177-4190.

    • [93]CHEN Z.Surface hydration and antifouling activity of zwitterionic polymers[J].Langmuir,2022,38(15):4483-4489.

    • [94]ANDEL E V,LANGE S C,PUJARI S P,et al.Systematic comparison of zwitterionic and non-zwitterionic antifouling polymer brushes on a bead-based platform[J].Langmuir,2018,35(5):1181-1191.

    • [95]LADD J,ZHANG Z,CHEN S,et al.Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma[J].Biomacromolecules,2008,9(5):1357-1361.

    • [96]YANG W,XUE H,LI W,et al.Pursuing “Zero” protein adsorption of poly(carboxybetaine)from undiluted blood serum and plasma[J].Langmuir,2009,25(19):11911-11916.

    • [97]CHANG Y,CHEN S,ZHANG Z,et al.Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines[J].Langmuir,2006,22(5):2222-2226.

    • [98]WANG X,YAN S,SONG L,et al.Temperatureresponsive hierarchical polymer brushes switching from bactericidal to cell repellency[J].ACS Applied Materials & Interfaces,2017,9(46):40930-40939.

    • [99]LIU H,MA Z,YANG W,et al.Facile preparation of structured zwitterionic polymer substrate via sub-surface initiated atom transfer radical polymerization and its synergistic marine antifouling investigation[J].European Polymer Journal,2019,112:146-152.

    • [100]TAN R,HAO P,WU D,et al.Ice-inspired polymeric slippery surface with excellent smoothness,stability,and antifouling properties[J].ACS Applied Materials & Interfaces,2023,15(34):41193-41200.

    • [101]YARBROUGH J C,ROLLAND J P,DESIMONE J M,et al.Contact angle analysis,surface dynamics,and biofouling characteristics of cross-linkable,random perfluoropolyether-based graft terpolymers[J].Macromolecules,2006,39(7):2521-2528.

    • [102]YUE D,JIANG X,YU H,et al.Development of a robust slippery liquid-infused porous surface with grafted polymer brushes and its anti-biofouling applications in marine engineering[J].ACS Applied Polymer Materials,2023,5(8):5984-5994.

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

    标签:
相关文章
无相关信息