摘要
和传统合金材料相比,高熵合金具有更优异的耐腐蚀、高温耐磨损以及综合力学性能等,在一些苛刻环境下具有极大的潜在应用价值,因此受到了越来越多的关注。本文聚焦于高熵合金的耐蚀性能。首先,重点讨论了常用的合金元素对BCC、FCC、BCC + FCC和HCP晶体结构的高熵合金在NaCl、酸性溶液介质中耐蚀性能的影响规律。其次,简要说明了金属元素之间的相互作用对高熵合金耐蚀性能产生的影响。讨论了晶粒尺寸、位错密度和晶体结构等微观特征对高熵合金耐蚀性的影响规律,增大晶粒尺寸或减少位错密度,有助于提高其耐蚀性。最后,总结了几种改善高熵合金耐蚀性能的方法,如热处理、阳极处理和添加缓蚀剂等技术,并对高熵合金未来的发展提出了建议和展望。
关键词: 高熵合金 ; 耐蚀性能 ; 苛刻环境 ; 微观组织 ; 合金元素
Abstract
Compared with traditional alloys, high-entropy alloys display bettercorrosion resistance, high-temperature wear resistance and comprehensive mechanical properties. Thus, high-entropy alloys can find their applications in some harsh environments where traditional alloys may not satisfy the requirements. This work focuses on the corrosion resistance of high-entropy alloys. The influence of commonly used alloying elements on the corrosion resistance of high-entropy alloys with BCC, FCC, FCC+BCC and HCP crystal structures in sodium chloride and acidic solution media was discussed. The effect of the interaction between metal elements on corrosion resistance of high-entropy alloys was briefly explained. The influence of grain size, dislocation density, and crystal structure on the corrosion resistance of high-entropy alloys was also discussed. The results show that the corrosion resistance of high-entropy alloys can be improved by increasing grain size or reducing dislocation density. Several methods for improving the corrosion resistance of high-entropy alloys such as heat treatment and anodizing treatment, as well as application of corrosion inhibitor, were summarized. Finally, suggestions and prospects for the future development of high-entropy alloys were put forward.
Keywords: high-entropy alloy ; corrosion resistance ; harsh environment ; microstructure ; alloy element
腐蚀是指在金属材料的界面上发生了不可逆的化学或电化学多相反应,腐蚀会显著降低金属材料的强度、塑性、韧性等力学性能,缩短设备的使用寿命。在生产过程中若不能及时发现,甚至可能造成灾难性事故。因此,研究腐蚀行为和开发耐腐蚀结构功能材料具有巨大的经济效益。
针对材料的腐蚀问题,研究者开发了大量的铁合金[1]、镍合金[2]和钛合金[3]等耐蚀合金材料,并应用到工业和日常生活的各个领域。然而在航空航天、航海和国防建设的武器设备等服役条件更加苛刻,需要金属材料有更高的耐高温、耐腐蚀、耐磨损的性能。传统合金大多不能满足这些严苛的要求,所以开发更加耐腐蚀材料的问题亟待解决。2004年,Yeh等[4]创造性提出了高熵合金(HEAs)和多主元合金的概念,随后高熵合金成为国内外的研究热点[5~8]。HEA是一种新型固溶体合金材料,定义为含有5种或5种以上主元素,各主要成分的含量均大于5%(原子分数),小于35%[9]。这种结构具有较高的混合熵,能够在凝固过程中形成结构简单的固溶体。大部分合金的微观结构主要是由简单体心立方相(BCC)、面心立方相(FCC)或密排六方相(HCP)构成[10]。随着科学研究的不断深入,发现HEAs在热力学中具有高熵效应,在动力学中具有缓慢扩散效应,结构中的晶格畸变效应和性能中的“鸡尾酒”效应[11]。这些特殊的效应使HEAs具有高强度、硬度[12,13]和良好的结构稳定性等性能[14],最重要的是,多元素固溶体中均匀分布的合金元素大大提高了合金的抗氧化性和耐蚀性能[15]。
1 HEAs的主要应用领域
HEAs因其优良的耐蚀性、高温稳定性、高硬度和高强度,在各领域中发挥着越来越重要的作用。但HEAs一般都含有一种或者多种价格昂贵的合金元素,例如Co、Ni、Mo、V等,使得HEAs通常具有较高的成本。因此,HEAs一般都用在传统材料不能满足性能要求的苛刻环境下使用。
1.1 生物材料
Ti-6Al-4V、Co-Cr-Mo合金因为具有良好的力学性能和耐蚀性[16,17]而被应用在生物材料中。然而,这些合金中的有毒元素如Al、Cr、Ni、V等在长期植入过程中可能因腐蚀和摩擦而溶解,导致阿尔茨海默病、过敏反应和癌症。此外,这些合金的弹性模量通常高于骨骼的弹性模量[18],由此引起的“应力屏蔽效应”可能会导致植入物松动、骨质疏松等问题。Yang等[19]研究了由单一BCC相组成的Ti20Zr20Hf20Nb20Ta20 HEA在模拟生理环境中的生物腐蚀行为和体外生物相容性。该合金具有良好的力学性能,并且由生物相容性元素组成。与Ti-6Al-4V合金相比,Ti20Zr20Hf20Nb20Ta20表现出相对较低的弹性模量(~80 GPa)、较高的屈服强度(800~985 MPa)和良好的耐磨性[20~22]。在TiZrHfNbTa表面进行的MC3T3-E1细胞培养实验展示出良好的细胞粘附性、活力和增殖性,这表明该合金具有良好的体外生物相容性。Hua等[23]研究了Ti x ZrNbTaMo (x = 0.5、1、1.5和2)高熵合金的力学、腐蚀和磨损行为。结果表明Ti0.5ZrNbTaMo HEAs表现出约500 HV的高硬度、接近2600 MPa的高抗压强度和超过30%的大塑性变形;在磷酸盐缓冲盐水(PBS)溶液中,Ti0.5ZrNbTaMo HEAs表面形成了优异保护性的氧化膜,具有高的耐蚀性,这些性质对生物医学领域的应用具有很大潜力。
1.2 冶炼、高温设备材料
在氧化和腐蚀环境中保持表面稳定是材料在高温下服役的关键条件之一,因为氧化和腐蚀导致的材料损失和表面退化最终会导致结构部件的失效[24~26]。Tsao等[27]研究了Ni-Co-Fe-Al-Cr-Ti元素组成的高熵高温合金(HESA)的高温氧化和腐蚀行为。结果表明,HESA的表面上形成氧化铬或氧化铝。与镍基高温合金CM247LC的抗氧化性和耐蚀性能比较表明,形成Al2O3的HESA在1100℃时的抗氧化性能强于镍基高温合金CM247LC,且形成Cr2O3的HESA在900℃时表现出优异的抗热腐蚀性。Gorr等[28]研究表明,W-Mo-Cr-Ti-Al、Nb-Mo-Cr-Ti-Al和Ta-Mo-Cr-Ti-Al 3种难熔HEAs在1000和1100℃下具有优异的抗高温氧化性能。同时文献[29,30]表明,HEAs具有高的相稳定性,当其作为涂层材料时,不易与基体材料发生反应,并具有超过传统高温合金的抗高温软化能力[31]。因此,HEAs也可用作热扩散屏障材料[32]。
1.3 工业运输、海洋环境材料
由于HEAs的“过饱和固溶体”特性,可以加入大量的抗腐蚀合金元素。目前研究表明HEAs在酸性、碱性、海洋性环境中均具有优异的抗腐蚀性能,可用作海洋环境下的抗腐蚀材料。用聚合物和陶瓷材料作为保护涂层均有一些局限性,例如陶瓷涂层易碎,而聚合物涂层的附着性较差,易脱落[33]。由AlCrFeNiW0.2Ti0.5 HEAs制成的涂层具有高硬度(~692 HV)和优异的耐摩擦性能[34]。Hsu等[35]对比了铸态FeCoNiCrCu x 合金和304L不锈钢的耐蚀性,电化学结果表明,FeCoNiCr合金的腐蚀电流密度更小且点蚀点位大于304L不锈钢,说明FeCoNiCr在3.5%NaCl溶液中更容易钝化和耐腐蚀,比304L不锈钢表现出更好的耐蚀性。HEAs的耐蚀性对工业腐蚀性物质的运输和航空航天的事业发展都将会产生巨大的帮助。
2 高熵合金的耐蚀性能研究
根据Hume-Rothery[36]规则,影响二元固溶体形成的因素包括原子尺寸差异(δ)、价电子浓度(VEC)、溶质和溶剂原子的晶体结构以及电负性的差异。Guo等[37]总结了VEC与许多HEAs结构之间的关系。通过图1可以看出,当合金的VEC大于8时,FCC结构稳定,当合金的VEC小于6.87时,BCC结构稳定,VEC的值在6.87~8时,FCC和BCC相共存。目前一般认为VEC是控制FCC或BCC固溶体相稳定性的重要物理参数,但VEC对相形成的影响机制尚未完全了解。
图1 VEC与各种HEAs系统的FCC、BCC相稳定性之间的关系[37]
Fig.1 Variations of the stabilities of FCC and BCC phases for various HEA systems with VEC[37]
除这些因素外,混合焓和混合熵是HEAs最重要的相形成参数。可表示为:
式中,
形成简单固溶体相必须同时满足-22 kJ/mol ≤
组成HEAs的元素虽然很多,但其晶体结构一般都是简单的FCC相、BCC相、HCP相或者是它们组成的混合结构[39]。不同结构的HEAs在各方面的性能也不相同,本文主要讨论几种结构HEAs在NaCl溶液和酸性环境中抗腐蚀方面的规律和基本原理。HEAs浸泡在NaCl溶液中会形成钝化膜,钝化膜大部分是非晶的,同时带有少量的纳米晶体(NCs)[40]。NCs和非晶区之间的界面形成一条通路,在含Cl-的溶液中,Cl-在钝化膜表面发生吸附,NCs和非晶区的界面为Cl-传输提供了现成的路径。当路径贯穿整个钝化膜厚度时,穿过这些路径的Cl-最终将到达并攻击基体/钝化膜界面,使界面变得模糊和起伏,Cl-会穿过钝化膜界面到达基体,使金属发生腐蚀。随着时间增加,腐蚀会向更深更广的区域延伸。致密且没有缺陷的钝化膜在合金表面形成保护层,可以作为防止Cl-渗透的屏障。而在酸性环境中,酸中的H+与合金表面的金属氧化物膜发生反应,导致钝化膜被破坏,然后H+继续与金属基体反应,使得金属基体溶解。金属成为金属离子进入溶液中,进而与酸性溶液中的O2或水反应,释放出的热量也能加速腐蚀的发生。
Ti、Mo、Ni、Co、Al、Cu、Cr等是HEAs中常用的几种元素,下面分别讨论这些合金元素以及元素含量对HEAs耐蚀性能的影响。
2.1 BCC结构的HEAs
2.1.1 BCC相结构
和其他结构的HEAs相比,BCC结构HEAs具有更高的强度和硬度,但其塑性相对较低。由于BCC结构的延展性有限,所以其也更易受到点蚀的影响。BCC相HEAs的典型代表是AlCoCrFeNi系合金。Wang等[41]研究表明,随着凝固冷却速率的增加,晶粒细化和Cr偏析的减少,AlCoCrFeNi微观结构更加均匀,合金的强度和塑性均显著提高,这对提高BCC结构HEAs的耐蚀性也可能具有正向作用。
2.1.2 合金元素对BCC相HEAs耐蚀性能的影响
(1) Ti Zhao等[42]对Al2-x CoCrFeNiTi x (x = 0,0.2,0.5,0.8,1.0,1.2)HEAs在3.5%(质量分数)NaCl溶液中耐蚀性能进行研究,该合金是由BCC相组成,Ti的加入有利于形成有序的BCC2相和Laves相。Yu等[43]对AlCoCrFeNiTi x (x = 0,0.3,0.5)研究表明,由于Ti和Al的元素取代导致的晶格膨胀,使单个BCC相转变为BCC1相和BCC2相。
图2表明,合金腐蚀类型主要为点蚀,Ti从0增到0.5,腐蚀坑越来越小;Ti含量为0.5%时,Al1.5CoCrFeNiTi0.5合金的腐蚀坑最小,说明耐蚀性最好。
图2 在3.5%NaCl溶液中极化后Al2 - x CoCrFeNiTi xHEAs的表面形貌[42]
Fig.2 Surface morphologies of Al2 - x CoCrFeNiTi x HEAs after polarization in 3.5%NaCl solution: (a) x = 0, (b) x = 0.2, (c) x = 0.5, (d) x = 0.8, (e) x = 1.0, (f) x = 1.2 [42]
通常采用电化学阻抗谱(EIS)的测试方法来评估合金的阻抗大小。EIS结果表明,该合金体系的Nyquist图均呈现出圆弧特性,这与界面发生的电荷转移过程有关[44]。图3a和b是铸态Al2 - x CoCrFeNiTi x HEAs的Nyquist图和Bode图,图3c是等效电路图。这里的Ru表示溶液电阻,Rf表示合金钝化膜电阻,Rct表示合金的电荷转移电阻,恒相位元件CPE1和CPE2分别与钝化层和双层的电容关联。由图3a可知,Al1.5CoCrFeNiTi0.5有最大的圆弧半径,表明其具有最大的Rct,说明该合金的阻抗值最大,耐蚀性能最优。随着Ti含量继续增加,圆弧半径逐渐变小,耐蚀性逐渐越低,这与图2中SEM显示的结果是一致的。造成此现象的原因是富Al-Ni区优先被腐蚀,贫Cr相形成含Cr氧化物的钝化膜较少,使耐蚀性变差。Liu等[45]在AISI1045钢表面制备了BCC相的AlCoCrFeNiTi x (x = 0,0.2,0.4,0.6,0.8,1.0) HEAs涂层,并对其腐蚀行为进行研究。动电位极化曲线及Tafel曲线拟合结果表明,AlCoCrFeNiTi1.0涂层具有最小的腐蚀电流密度(Icorr)和最小的腐蚀速率(Vcorr),具有最佳的耐蚀性。Ti的加入可以阻碍点缺陷的扩散,增强钝化膜的致密性,从而提高HEAs的耐蚀性能。也有研究表明,加入过量的Ti会导致AlCoCrFeNiTi1.5[46]和CoCrCuFeNiTi HEAs形成Fe2Ti型Laves相[47],使HEAs的微观结构变得更加不均匀,从而降低了耐蚀性能[13]。
图3 铸态Al2-x CoCrFeNiTi x HEAs的Nyquist图、Bode图以及用于相应的等效电路图[42]
Fig.3 Nyquist (a), Bode (b) plots of as-cast Al2 - x CoCr-FeNiTi x HEAs and corresponding equivalent circuit model (c)[42]
(2) Mo
目前,关于BCC结构HEAs中添加Mo对其耐蚀性的影响研究较少,主要涉及含Mo合金在酸性溶液中耐蚀性能的研究。研究表明,Al0.4CrFe1.5MnNi0.5Mo x (x = 0、0.1)为BCC固溶体结构的HEAs[48],研究者将Al0.4CrFe1.5MnNi0.5Mo x 浸泡在0.5 mol/L H2SO4溶液中观察合金的腐蚀状态,并和同等条件下的304不锈钢进行了对比。
表1显示Mo含量增加到0.1 mol时,Al0.4CrFe1.5MnNi0.5Mo x 合金的Icorr由3.2 × 10-3 A/cm2下降到6.1 × 10-5 A/cm2,和304不锈钢的腐蚀电流值接近。腐蚀电位(Ecorr)从-340 mV提高至-60 mV,304不锈钢的腐蚀电位介于添加和未添加Mo的合金之间。作者认为,加入0.1 mol Mo可以抑制溶液中H+的还原反应,从而提高了合金的耐蚀性能。添加Mo后合金的点蚀电位(Epit)值没有发生变化,这是由于外加电位不断增大,达到水的电解电位(1.23 V)后氧的释放造成的。在强酸性条件(pH < 1)下,Mo倾向于以MoO3氧化物的形式析出。MoO3是一种保护氧化层,它可以降低腐蚀速率,从而提高Al0.4CrFe1.5MnNi0.5Mo0.1合金在H2SO4溶液中的耐蚀能力。
表1 3种合金在0.5 mol/L H2SO4溶液中的Ecorr, Icorr, Ipass和Epit值[48]
Table 1 Ecorr, Icorr, Ipass, and Epit values of three alloys in 0.5 mol/L H2SO4 solution[48]
2.2 FCC结构的HEAs
2.2.1 FCC相结构
FCC相结构的HEAs的性能优势是它具有超高的塑性变形能力[49]。Tsai等[50]研究了Al0.5CoCrCuFeNi HEAs的变形和退火行为,研究表明该合金具有良好的加工性能,在热锻和冷轧时均表现出较强的加工硬化能力。FCC相结构的HEAs在NaCl溶液中的耐蚀性要远大于不锈钢。对FCC结构HEAs腐蚀机理的研究结果表明,合金腐蚀机制为电荷转移和扩散控制的混合过程,与奥氏体不锈钢的腐蚀机理相似。在NaCl溶液中,FCC相结构的高熵合金具有优异的钝化膜形成能力[51]。在腐蚀介质侵蚀过程中,合金元素没有发生明显的选择性溶解[52]。可以推断,在腐蚀过程中,FCC结构HEAs可能以接近协同钝化和溶解的方式与腐蚀介质发生交互作用,从而抑制局部选择性腐蚀的发生。目前FCC结构HEAs领域的研究还处于继续提升阶段,随着研究的深入,具有优异塑性的FCC相HEAs一定可以成为新材料领域的有力支柱。
2.2.2 合金元素对FCC相HEAs耐蚀性能的影响
(1) Co 合金元素Co在合金领域一直是个研究热点,它能提高合金的硬度、强度和耐蚀性能,在HEAs中也同样占有很重要的位置。Zhao等[53]采用粉末冶金技术(机械合金化(MA)+真空热压烧结(HPS))制备了Co x CrCuFeMnNi(x=0.5,1.0,1.5,2.0) HEAs。Co x CrCuFeMnNi由两个FCC相组成,一个是富Fe,Cr的FCC1相,另一个是富Co,Cu,Ni,Mn的FCC2相。他们研究了Co x CrCuFeMnNi合金在3.5%NaCl溶液中的腐蚀行为,图4是Co x CrCuFeMnNi合金的动电位极化曲线,表2是根据图4曲线获得的腐蚀性能参数。由表可见,Co含量增加,Icorr随之降低,Co2.0达到最小;Ecorr和Epit随Co含量增加而增大,Co2.0达到最大,年腐蚀速率为最低。结果表明,随着Co含量的增加,Co x CrCuFeMnNi HEAs的耐蚀性能提高。Cr、Ni和Co等元素容易形成致密的钝化膜,以防止合金进一步腐蚀。钝化元素含量越高,合金的耐蚀性越强。以上研究表明,增加Co含量可以提升高熵合金的耐蚀性能。
图4 Co x CrCuFeMnNi HEAs在3.5%NaCl溶液中的动电位极化曲线[53]
Fig.4 Potentiodynamic polarization curves of Co x CrCuFeMnNi HEAs in 3.5%NaCl solution[53]
表2 Co x CrCuFeMnNi HEAs在3.5%NaCl溶液中的耐蚀性能参数[53]
Table 2 Corrosion performance parameters of Co x CrCuFeMnNi HEAs in 3.5%NaCl solution[53]
(2) Mo
魏琳等[54]研究了Mo对Ni2CrFeMo x (x = 0.1,0.2,0.3,0.4,0.5) HEAs在3.5%NaCl溶液中耐蚀性能的影响。Ni2CrFeMo x 合金均为枝晶结构,单相FCC结构的Ni2CrFeMo0.1和Ni2CrFeMo0.2合金腐蚀形式为点蚀,且点蚀主要发生在晶界处。实验结果表明,Ni2CrFeMo0.2合金具有最小的Icorr,耐蚀性能最好。Chou探究Mo对Co1.5CrFeNi1.5Ti0.5Mo x 合金在1 mol/L NaCl溶液中的腐蚀影响[55],结果表明无Mo合金出现腐蚀坑,而含Mo合金的腐蚀程度大大减轻。同时,也观察到Co1.5CrFeNi1.5Ti0.5Mo x (x = 0.5,0.8)合金中富σ相的存在。对(CoCrFeNi)100 - x Mo x 合金的研究表明[56],其在3.5%NaCl溶液中的耐蚀性变化和Co1.5CrFeNi1.5Ti0.5Mo x 合金类似。Dai等[57]探究了FCC相结构FeCoCrNiMo x 在氯化物环境中微观结构的腐蚀行为,结果如图5所示。可以看出,图5a1~c1中,在不含Mo的合金中,随着极化时间增加到1800 s,在Mo0合金上形成的凹坑相比其他合金更大、更深。图5a2~c2中,相比之下,不管极化时间长短,Mo0.1合金始终保持良好的抗阳极溶解性,图5中的a3~c3以及a4~c4都证实了腐蚀是沿着晶界形成的。
图5 FeCoCrNiMox合金在1 mol/L NaCl中极化600和1800 s后的阳极溶解形态的SEM和3D图像[57]
Fig.5 SEM and 3D images of anodic dissolution morphologies of FeCoCrNiMo x alloys polarized in 1 mol/L NaCl for 600 s and 1800 s, (a1-c1) x = 0, (a2-c2) x = 0.1, (a3-c3) x = 0.3, (a4-c4) x = 0.6[57]
Chou等[55]同时研究了Co1.5CrFeNi1.5Ti0.5Mo x 在0.5 mol/L H2SO4溶液中的腐蚀行为。含Mo和不含Mo合金的动电位极化曲线图相似,当x = 0.1时,腐蚀电流密度小于不含Mo的合金,当Mo含量继续增大,腐蚀电流密度反而变大,耐蚀性变差,说明HEAs中加入适量的Mo,能够提高合金的耐蚀性。这是因为Mo形成的MoO
吸附在合金表面抑制点蚀的形成,起到保护金属的作用。且Mo的添加促进含Cr氧化物的内钝化膜的形成,提高了Cr2O3/Cr(OH)3的比例。当Mo含量继续增大后,合金的耐蚀性能降低。这是因为在合金枝晶间析出了富集Cr、Mo的σ相,枝晶为贫Cr和Mo相,使枝晶与枝晶间存在较大的电位差,富Cr、Mo相为阴极,贫Cr、Mo的相为阳极组成电偶发生电偶腐蚀,导致Cl-和H+侵入到基体加速了合金的腐蚀。
(3) Sn
含Sn的HEAs具有很大的应用潜力。Zheng等[58]制备了不同Sn含量的FeCoNiCuSn x 合金,研究了合金的微观组织和在NaCl溶液中的腐蚀行为。当Sn含量低于0.09时,FeCoNiCuSn x 合金由单一FCC相组成,为典型的枝晶形貌。合金的形貌和枝晶尺寸随Sn含量的变化而变化。当Sn含量为0.04时,显微组织细小且对称。其中,FeCoNiCuSn0.04耐蚀性能最好。合金腐蚀的主要原因为枝晶干和枝晶间的电偶作用,进而导致局部腐蚀[59],因此,FeCoNiCuSn0.04 HEA优异的耐蚀性能可能归因于其晶粒细且无偏析。当Sn继续增大,显微组织变的更加粗大,不利于合金的耐蚀性能提高。目前对于Sn的研究较少,对于Sn对合金的影响和腐蚀机理还未见到,未来Sn对HEAs的影响规律还有很大的探索空间。
表3总结了文献中FCC结构HEAs在3.5%NaCl溶液中的耐蚀性能参数。可以看出,大多数HEAs的Icorr均小于传统不锈钢的,这也充分说明HEAs的耐蚀性能要比传统不锈钢更好[58]。
Co0.5CrCuFeMnNi |
-964 |
4.04 × 10-5 |
-91 |
[53] |
Co1.0CrCuFeMnNi |
-888 |
3.84 × 10-5 |
-88 |
[53] |
Co1.5CrCuFeMnNi |
-785 |
1.11 × 10-5 |
-41 |
[53] |
Co2.0CrCuFeMnNi |
-787 |
6.95 × 10-6 |
19 |
[53] |
Ni2CrFeMo0.1 |
-135 |
2.103 × 10-6 |
0.81 |
[54] |
Ni2CrFeMo0.2 |
-179 |
0.896 × 10-6 |
0.92 |
[54] |
Ni2CrFeMo0.3 |
-103 |
1.959 × 10-6 |
0.73 |
[54] |
Ni2CrFeMo0.4 |
-121 |
1.711 × 10-6 |
0.72 |
[54] |
Ni2CrFeMo0.5 |
-125 |
2.014 × 10-6 |
0.54 |
[54] |
Co1.5CrFeNi1.5Ti0.5 |
-440 |
5.7 × 10-7 |
0.33 |
[55] |
Co1.5CrFeNi1.5Ti0.5Mo0.1 |
-380 |
1.3 × 10-7 |
1.21 |
[55] |
Co1.5CrFeNi1.5Ti0.5Mo0.5 |
-490 |
2.0 × 10-7 |
1.16 |
[55] |
Co1.5CrFeNi1.5Ti0.5Mo0.8 |
-550 |
4.1 × 10-7 |
1.18 |
[55] |
FeCoNiCu |
-786 |
0.949 × 10-6 |
- |
[58] |
FeCoNiCuSn0.02 |
-845 |
2.125 × 10-6 |
- |
[58] |
FeCoNiCuSn0.03 |
-853 |
3.233 × 10-6 |
- |
[58] |
FeCoNiCuSn0.04 |
-722 |
0.969 × 10-6 |
- |
[58] |
FeCoNiCuSn0.05 |
-851 |
1.354 × 10-6 |
- |
[58] |
FeCoNiCuSn0.07 |
-895 |
1.855 × 10-6 |
- |
[58] |
316L stainless steel |
-875 |
5.068 × 10-5 |
- |
[60] |
430 stainless steel |
-510 |
6.622 |
- |
[61] |
2205 stainless steel |
-391 |
2.3 |
- |
[62] |
表3 FCC结构HEAs在3.5%NaCl溶液中的电化学参数
Table 3 Electrochemical parameters of FCC HEAs in 3.5%NaCl solution
2.3 BCC+FCC相结构的高熵合金
2.3.1 BCC + FCC相结构
FCC结构的合金塑性较好,BCC结构的合金硬度或强度更高。早期的HEAs不能兼顾强度和塑性,近期研究者通过成分调整、凝固控制、形变热处理等方式来调控FCC和BCC双相结构HEAs的性能,提高合金屈服强度、抗压强度和延伸率等综合性能,其抗腐蚀性和耐热性也比传统合金高出一个数量级。由Al、Cu、Ni、Cr等元素组成的双相HEAs在NaCl、H2SO4和HNO3等不同的溶液介质中展现出不同的耐蚀能力。
2.3.2 合金元素对BCC + FCC相HEAs耐蚀性能的影响
(1) Al Al的加入能促进BCC相的形成,在HEAs中,与Co、Cr、Ni等元素相比,Al在电偶序中的惰性较低,容易发生优先溶解[63]。关于不同Al含量BCC相结构的高熵合金在NaCl溶液中的耐蚀性能,也有不少研究。Raza等[64]研究了Al x CrFeMoV合金(x = 0,0.2,0.6,1)在3.5%NaCl溶液中的点蚀行为。结果表明Al在刚加入时钝化区的Icorr降低,点蚀电位升高,Al继续加入,Icorr开始增加,点蚀电位降低,说明过量的Al不利于提高合金的耐蚀性能。Shi等[65,66]对Al x CoCrFeNi合金的微观结构和在3.5%NaCl溶液中的耐蚀性进行研究,如图6所示。
图6 Al x CoCrFeNi合金的BSE图像和EBSD相图[65,66]
Fig.6 BSE (a, c, e) and EBSD (b, d, f) images of Al x CoCrFeNi alloys: (a, b) x = 0.3, (c, d) x = 0.5, (e, f) x = 0.7[65,66]
对于Al0.3CoCrFeNi合金,图6a和b表明该合金由单一固溶体FCC相组成。图6c和d显示Al0.5CoCrFeNi合金中有BCC相生成。微观结构表明枝晶干为FCC相,枝晶间为BCC相。BCC相通常为富Al-Ni、贫Cr相,而高Al低Cr合金在表面会形成多孔氧化铝氧化膜,导致钝化膜的均匀程度和保护能力下降。王帅[67]研究了铸态Al x CoFeNiCr1 - x (0.1 ≤ x ≤ 1.0)的微观组织特征和在3.5%NaCl溶液中的腐蚀行为,也得到了相似的结论。Shi等[68]研究了Al x CoCrFeNi (x = 0.3,0.5,0.7)合金在NaCl水溶液中的腐蚀行为,并对生成的钝化膜成分进行了表征。结果表明,钝化膜中的Cr含量会随着Al含量的增加而降低,钝化膜中主要为Al2O3,而耐腐蚀成分Cr2O3在减少,含有大量Al氧化物的钝化膜较厚但多孔,对基体起不到良好的保护作用,这在Al x CrFe1.5MnNi0.5合金中也得到了证实[69]。根据以上对添加Al的分析可知,一般情况下若HEAs加入Al后生成双相HEAs,当Al含量到达一定值时,合金中的FCC相将会由BCC相取代。BCC相为贫Cr相,然而Cr的氧化物致密且能够有效防止Cl-的侵蚀。当不断加入Al后,贫Cr现象更严重,钝化膜不能抵挡Cl-的侵蚀,合金的耐蚀性能越来越差。
研究者也研究了加入不同含量Al的HEAs在酸溶液中的腐蚀行为。Lee等[69]同时研究了Al含量对Al x CrFe1.5MnNi0.5合金在0.5 mol/L H2SO4溶液中腐蚀行为的影响。结果表明随着Al含量的增加,Ecorr降低,Icorr增加。电化学阻抗谱(EIS)测试结果表明,电荷转移电阻降低,说明耐蚀性能降低。其机理如下:
因此,Al加入产生的多孔腐蚀产物覆盖在合金表面,其保护性较差,合金腐蚀性能降低。Hu等[70]对Al x CoCrFeNiCu (x = 0.5、1.0、1.5、2.0) HEAs在HNO3溶液中的腐蚀行为进行了研究, Al x CoCrFeNiCu HEAs在10%(质量分数) HNO3溶液中完全浸泡24 h后的形貌如图7所示。
图7 Al x CoCrFeNiCu HEAs在10%HNO3溶液中浸泡24 h后的腐蚀形貌[70]
Fig.7 Corrosion morphologies of Al x CoCrFeNiCu HEAs after immersion in 10%HNO3 solution for 24 h: (a) x = 0.5, (b) x = 1.0, (c) x = 1.5, (d) x = 2.0[70]
当Al的摩尔比小于等于1.0时,合金主要腐蚀类型为点蚀,Al含量继续增加,腐蚀加剧,由点腐蚀变成了均匀腐蚀并且腐蚀范围逐渐提高。综上所述,当Al的摩尔比小于1.0时,Al x CoCrFeNiCu HEAs在硝酸溶液中具有良好的耐蚀性能,且加入Al的FCC相的抗HNO3腐蚀性能优于BCC相。
(2) Cu
Hsu等[35]研究了铸态FeCoNiCrCu x (x = 0,0.5,1)合金和304L不锈钢在3.5%NaCl溶液中的腐蚀行为,铸态FeCoNiCrCu0.5和FeCoNiCrCu合金均为典型的枝晶形貌。能量色散X射线光谱(EDX)分析表明,FeCoNiCrCu x 的枝晶间为富Cu的FCC相,枝晶干为贫Cu的BCC相。FeCoNiCrCu0.5和FeCoNiCrCu沿枝晶间发生局部腐蚀,这是由Cu偏析引起的。Cu的加入对FeCoNiCrCu x 合金的耐蚀性能产生负面影响,加速了腐蚀。而吴昊等[71]对CoCrFeNiMnAlCu x 在3.5%NaCl溶液中的腐蚀行为研究表明,较低Cu含量(x = 0.2、0.4、0.6)的合金中Cu可以均匀固溶于HEAs中,只有较少的Cu偏析,提高了其耐蚀性能,且Cu含量x = 0.6时耐蚀性能最优。而当Cu含量增加至x = 0.8后,合金中Cu易在晶界处析出。由于Cu与其他元素具有较负的混合焓,与Fe、Co、Ni、Cr等元素结合力较弱,在合金凝固过程中,不与其他元素互溶,被排斥到枝晶间,形成了富Cu的FCC相。富Cu贫Cr枝晶间与贫Cu富Cr枝晶干形成电偶腐蚀。
在酸性环境下,Ren等[72]将CuCrFeNiMn体系HEAs浸泡在1 mol/L H2SO4中100 h,通过动电位极化实验研究了Cu对CuCrFeNiMn体系腐蚀行为的影响。结果表明,具有低Cu含量和最小元素偏析的CuCr2Fe2Ni2Mn2合金具有最高的耐蚀性能,而具有较高Cu含量的Cu2Cr2Fe2Ni2Mn2元素偏析更加明显,具有更差的耐蚀性能。CuCrFeNiMn合金经历了均匀腐蚀和局部腐蚀(包括晶间腐蚀)[72],Cu的加入易于产生元素偏析,从而加速合金的腐蚀。
综上分析可知,添加Cu后会生成富Cu的FCC相,一般都由FCC相开始腐蚀。但Cu对高熵合金腐蚀性能的影响规律还存在争议。有文献认为加入少量Cu可以提升高熵合金腐蚀性能,但是加入过量的Cu产生的偏析降低了高熵合金腐蚀性能,而也有文献研究认为加入Cu会降低高熵合金的耐蚀性能。因此,Cu对HEAs耐蚀性能的研究还需要深入。
(3) Cr
Cr是经典HEAs体系中的主要元素之一,Cr的添加可以增强HEAs的耐蚀性能;同时,Cr的氧化物对HEAs钝化膜的耐蚀性也发挥着重要作用。Chai等[73]系统地研究了FeCoNiCr x (x = 0,0.5,1.0)在3.5%NaCl溶液中的组织和腐蚀行为。结果表明随着Cr含量的增加,铸态组织由枝晶向胞状晶转变。FeCoNiCr0.5合金在3.5%NaCl溶液中表现出优异的耐蚀性能,而Cr的过量添加导致FeCoNiCr合金出现明显的局部腐蚀,这可能是微观组织形态的转变造成的。同时,Cr的分布对FeCoNiCr基多主元合金的耐蚀性能也有较大影响。与传统合金不同,HEAs中是几种元素同时起着主导作用。因此,在未来工作中,我们要考虑到其他元素会改变Cr的固溶和析出特征,从而影响高熵合金的耐蚀性能。
在酸性溶液中,Lin等[74]采用电弧熔炼法制备了Cr x FeNiCu0.5Ti0.5 (x = 0,0.3,0.5,0.7,0.9,1.2) HEAs,研究了其显微组织和在0.5 mol/L H2SO4溶液中的耐蚀性能。分析表明,随着Cr摩尔比的增加,组织由无Cr合金的FCC + 金属间化合物(IMs)转变为FCC + IMs + BCC。BCC相逐渐增多,且Cr主要分布在BCC相中。动电位极化曲线表明,Cr显著提高了Cr x FeNiCu0.5Ti0.5的腐蚀电位,降低了其腐蚀电流密度,当x = 0.7时,合金的耐蚀性能最好。XPS结果表明,Cr0.7FeNiCu0.5Ti0.5的表面钝化膜主要由Cr2O3、TiO2、Fe氧化物和少量Cu组成。加入Cr后钝化膜的主要成分为致密的Cr2O3,有利于提高合金的耐蚀性能。Chen等[75]系统地研究了(CuFeNiMn)1 - x Cr x HEAs在HNO3溶液中的腐蚀行为。结果表明,合金表面是枝晶形貌,CuFeMnNi合金腐蚀程度最严重。随着Cr含量的增加,腐蚀形态由均匀腐蚀转变为枝晶间腐蚀, (CuFeMnNi)0.75Cr0.25合金具有最优的耐蚀性能。Cu偏析程度随着Cr的增加而减小,使Cu的分布更均匀。此外,随着Cr的增加,Cu的相对含量也降低,抗腐蚀性能提高。
(4) Ni
Ni可以改善合金的力学性能和腐蚀行为[76],Ni还可以与耐蚀性元素(如Mo、Cr和Cu)形成二元合金。Ni-Cu体系合金在海水中的耐腐蚀能力十分优异,Ni-Mo体系合金对酸溶液具有很强的抵抗力,Ni-Cr体系合金能较强抵抗应力腐蚀开裂性能[77]。Qiu和Liu[78]采用激光熔覆法制备了Al2CrFeCoCuTiNi x (x = 0,0.5,1,1.5,2) HEAs。该合金为FCC和BCC双相结构。在NaCl溶液中,随着Ni含量的增加,Al2CrFeCoCuTiNi x 合金的耐蚀性能逐渐升高,当x > 1后加入Ni会降低合金的耐蚀性。Ni与Al结合形成富Al-Ni的B2相可能是Al2CrFeCoCuTiNi x 合金的耐蚀性能降低的原因[79]。还有一种假设[77],Al2CrFeCoCuTiNi x 合金是FCC和BCC双相结构,Ni比其他组成元素的原子半径更小,可能会导致高Ni含量的合金中较大的晶格畸变,从而影响含Ni HEAs的耐蚀性能。然而,这些猜测目前还缺乏实验验证,Ni对高熵合金腐蚀机理和微观结构的影响仍需进一步的研究。
表4总结了文献中双相HEAs在NaCl溶液中动电位极化实验得到的腐蚀性能参数。可以看出,随着Al或Cu含量的增加,趋势是腐蚀电流密度增大,点蚀电位减小,表明耐蚀性能降低;Mo和Ni的加入使HEAs的耐蚀性能先提高后降低。
表4 FCC + BCC结构HEAs在3.5%NaCl溶液中的电化学参数
Table 4 Electrochemical parameters of (FCC + BCC) HEAs in 3.5%NaCl solution
表5总结了上述FCC + BCC双相结构HEAs在酸性溶液中的电化学参数。
表5 FCC + BCC结构HEAs在酸性溶液中的电化学参数
Table 5 Electrochemical parameters of (FCC + BCC) HEAs in acidic solutions
2.4 HCP结构的高熵合金
2.4.1 HCP相结构
HCP结构的HEAs多由具有HCP结构的镧系重稀土金属元素组成[80]。Zhang等[81]研究具有HCP结构的主要元素是否有利于形成HCP固溶相。稀土Y和难熔的Hf、Zr、Ti元素均具有HCP结构。采用电弧熔融法制备了CuYZrTiHf、CuYZrAlHf和CuYZrAlTi。X射线衍射(XRD)分析显示,HEAs主要由HCP相和BCC间相组成。EDS显示,HCP相枝晶干均富含具有HCP结构的元素。根据HCP相的组成分析,可以得出结论,HCP相组成元素原子尺寸相近,HCP结构的元素有助于在HEAs中形成HCP固溶体相。类似地,所研究的HCP结构HEAs,如HfScTiZr、GdHoLaTbY和HoDyYGdTb,都由具有HCP结构的元素组成,这进一步证实了这一观点[82, 83]。
2.4.2 合金元素对HCP相HEAs耐蚀性能的影响
(1) Nb Tsau等[84]探究了Nb含量对CrFeCoNiNb x HEAs组织和耐蚀性能的影响,由SEM和XRD可知,CrFeCoNi合金是FCC结构。加入Nb后显微组织变为双相树枝状组织。Nb0.2和Nb0.4合金为过共晶合金,枝晶干为FCC相,枝间晶为FCC和HCP相共晶结构。Nb0.6和Nb1.0合金为亚共晶合金,枝晶干为HCP相,Nb含量的增加有助于合金形成HCP相。Tsau等[84]将Nb含量不同的CrFeCoNiNb x 合金分别放入30℃的1 mol/L H2SO4和1 mol/L NaCl溶液中进行动电位极化测试,结果表明Nb的加入增强了合金钝化区的稳定性,在两种溶液中,CrFeCoNiNb0.2和CrFeCoNiNb0.4合金的FCC相枝晶极化后腐蚀严重,CrFeCoNiNb0.6和CrFeCoNiNb合金的HCP相枝晶基本保持原始形貌。
Wen等[85]研究了激光熔覆纳米层状Ni1.5CrCoFe0.5Mo0.1Nb x (x = 0.55亚共晶、0.68共晶和0.8过共晶) HEAs涂层的组织和腐蚀行为,揭示了Nb含量对HEAs涂层耐蚀性能的影响。随着Nb含量的增加,Laves相的相对含量增加,FCC相的相对含量降低。由于Nb氧化物的稳定性高于Cr氧化物[86],因此,较高的Nb含量可以提高钝化膜的保护能力。其次,研究表明[87],二元Cr-Nb合金可以提高钝化膜的稳定性,添加Nb可以提高氧化铁钝化膜的致密性[88]。动电位极化曲线、M-S测试和AFM图像都得到一致的结果:随着Nb含量的增加,钝化膜的腐蚀电流密度减小,点缺陷密度降低,钝化膜上各成分的分布均匀性提高。Nb0.8涂层钝化膜的保护能力最好,Nb0.68涂层次之,Nb0.55涂层钝化膜最差。这说明Nb的增加增强了合金的耐蚀性能,同时Nb含量较高的合金显微硬度也有显著提高。
(2) Ti
Ti在各种环境中都有很高的耐蚀性能,这是由于在表面自发形成稳定而致密的氧化膜[89]。Ti作为一种轻金属元素,原子半径大,溶后强化效果好。贾强[90]对CoFeCrNiTi x (x = 0,0.5,1,1.5)的HEAs进行研究,结果表明随着Ti含量的增加,CrFeCoNiTi x 合金各向异性先增大后减小,CrFeCoNiTi x 合金结构由FCC向BCC转变,同时伴随着HCP相出现,CrFeCoNiTi x 中低温退火过程中会出现大量的HCP相,同时伴随少量FCC相。耐蚀性能方面,由于CrFeCoNiTi0属于中熵合金,且CrFeCoNiTi1.5的脆性较大,这里只给出CrFeCoNiTi0.5和CrFeCoNiTi1.0在海水环境和酸性环境的腐蚀情况。由表6可知,CrFeCoNiTi1.0在海水中的耐蚀性能更好。
表6 CrFeCoNiTi x 在海水中的腐蚀速率[90]
Table 6 Corrosion rates of CrFeCoNiTi x (x = 0.5, 1.0) in seawater[90]
为探究该合金在酸溶液中的腐蚀行为,将两种合金浸在0.5 mol/L H2SO4溶液30 d,Ti0.5合金腐蚀30 d质量损失为0.005 g,Ti1.0合金质量损失0.002 g。这说明在稀硫酸环境中,Ti1.0合金的耐蚀性能优于Ti0.5合金。因此,在海水环境中和酸性环境中,Ti1.0合金的耐蚀性都优于其它成分的合金。Zhou等[91]设计并制备了(FeCrCoNi)100 - x Ti x 体系的合金,研究了合金在H2SO4中的腐蚀行为。随着Ti含量的增加,合金钝化膜密度更大,具有更好的保护性能。X射线光电子能谱(XPS)分析表明,钝化膜具有双层结构,钝化膜外层的TiO2和内层的Cr2O3对合金的耐蚀性能起着重要作用。综上所述,添加Ti提升了合金在H2SO4中的耐蚀性能。目前,相对于FCC和BCC结构的高熵合金,对于HCP相HEAs的研究较少。关于HCP相在不同溶液体系中的腐蚀机理,以及其他合金元素对HCP相结构的影响还需进一步的研究。
2.5 合金元素的相互作用对耐蚀性能的影响
通过添加合金元素来控制合金组织和性能是合金设计的常用方法。HEAs腐蚀方面的研究表明,合金组成元素对耐蚀性能具有重要影响。在合金设计的过程中,HEAs的相组成、微观组织及元素偏析也会对其耐蚀性能造成显著影响[92],但是不能把各金属元素具有的优良性能通过简单的加和来预测生成的HEAs的性能。还要考虑到各元素的特性和相互作用,设计各元素的种类组成和配比。某种元素在合金中的作用可能也会因为加入了其他元素使其特性发生改变,或者使合金组织结构发生变化。
Qiu等[93]研究了Al x CoCrFeNiTi y 合金在0.6 mol/L NaCl溶液中的耐蚀性能。结果表明,当合金中不含Ti元素时,Al适量增加,其耐蚀性增强。但是当合金中同时加入Ti和Al两种合金时,耐蚀性明显减弱。这与Ti加入后,合金中析出Fe-Cr相有关,各元素的种类和含量可能会改变HEAs的结构,从而影响其耐蚀性能。杨海欧等[94]通过控制合金中Co和Cr的含量相同,增加Fe含量并同时减少Ni含量,研究了单相CoCrFeNi HEAs的组成元素对其在NaCl溶液中耐蚀性能的影响。电化学结果表明,该合金体系的维钝电流密度降低;当Fe、Cr含量相同时,增加Co含量的同时减少Ni含量,也能够降低合金的维钝电流密度,从而提高其耐蚀性能。目前,合金化相互影响的可参考性文献较少,还需要进一步研究。
2.6 微观结构对合金耐蚀性能的影响
影响HEAs耐蚀性的因素不仅有合金元素,晶体结构和晶体尺寸对HEAs的耐蚀性能也有很重要的作用。Parakh等[95]提出了一种多组分合金合成的新方法,称为顺序合金化。通过该方法可以在不影响合金整体成分的情况下改变晶体结构。改变元素混合的顺序,可以在AlCoCrFeNi中获得不同分数的BCC和FCC相[96]。除了晶体结构外,晶粒尺寸和位错密度等微观组织特征也会影响合金的腐蚀行为[97]。Parakh等[95]还通过实验探究了AlCoCrFeNi的耐蚀性能与晶体结构和晶粒尺寸的关系。他们采用连续合金化方法制备了不同BCC和FCC相混合的AlCoCrFeNi 系列HEAs:CoNi + Fe + Cr + Al(16%FCC)、FeCr + Ni + Al + Co(38%FCC)和AlNi + Co + Cr + Fe(62%FCC)基合金(通过真空电弧熔炼制备的合金被称为“铸造合金”,使用机械合金化(MA)形成的合金被称为“基合金”),测试了其在3.5%NaCl溶液中的耐蚀性能,研究了晶粒尺寸、位错密度和晶体结构对耐蚀性能的影响。结果表明晶粒尺寸增大和位错密度的减少会导致晶界减少,有助于提高耐蚀性能。其次,晶粒尺寸也影响合金表面氧化层的形成。铸造合金和基合金的晶粒尺寸较大,氧化层较厚,而CoNiFeCrAl合金晶粒尺寸小,所以氧化层多孔且薄,致密氧化层起到更好的抗腐蚀防护作用。晶体结构的影响方面,FCC是密排结合的晶格,FCC含量高有助于提高耐蚀性能;但是FCC相倾向于形成贫Cr氧化层,Co、Ni、Fe元素含量高于BCC相,容易溶解;所以HEAs中BCC∶FCC比值接近3∶2为最佳比值,FeCrNiAlCo合金中两相的比值接近最佳比值,其耐蚀性能更好。
2.7 提高HEAs耐蚀性能的方法
2.7.1 热处理
适当的热处理可以降低HEAs的元素偏析和相组成差异,提高组织的均匀性,从而提高合金的抗点蚀性能[98]。Lin等[99]对Cu0.5CoCrFeNi在350~1350℃范围进行热处理,在1250℃下加热24 h会使基体中富Cu相溶解,减少了微观组织中Cu的偏析量,通过动电位极化法对试样的耐蚀性进行评估,结果表明热处理后的Cu0.5CoCrFeNi合金在3.5%NaCl溶液中的腐蚀速率降低。魏琳等[54]探究热处理对Ni2CrFeMo x HEAs在3.5%NaCl溶液中耐蚀性能的影响。结果表明Ni2CrFeMo x 进行1200℃加热保温1 h的处理后,耐蚀性能明显高于未处理的铸态合金。元素的均匀分布是提高耐蚀性能的主要原因,热处理促使各原子之间的协同作用更加显著,减少了合金中晶界偏析和电偶腐蚀的发生,提高了耐蚀性能。但并非所有热处理都能提高合金的耐蚀性能,例如,一些经过热处理的HEAs,如Al0.5CoCrFeNi[100],在3.5%NaCl溶液下容易腐蚀。在这些情况下,热处理并没有使微观组织均匀化,而是促进了富Cr或富Cu相的形成和生长,降低了耐蚀性能。
2.7.2 阳极处理
阳极处理通常是通过优化合金的表面结构和成分来提高合金的耐蚀性能。Lee等[101]研究表明,对Al x CrFe1.5MnNi0.5 (x = 0,0.3,0.5)进行阳极处理可以显著提高合金的抗点蚀性能。在15%(质量分数)H2SO4溶液中以0.7 VSHE恒电位极化1800 s后,在Al x CrFe1.5MnNi0.5表面形成稳定的Cr2O3钝化膜。阳极处理使CrFe1.5MnNi0.5和Al0.3CrFe1.5MnNi0.5合金的耐蚀性能提高了两个数量级。因此,阳极处理优化了Al x CrFe1.5MnNi0.5合金的表面结构,有效的防止了点蚀的发生。
2.7.3 添加缓蚀剂
添加缓蚀剂也是一种减缓腐蚀的方法,尤其是在提高HEAs在含氯溶液中的抗点蚀性能方面,即在介质中加入缓蚀剂。Chou等[102]探究了25~80℃条件下Co1.5CrFeNi1.5Ti0.5Mo0.1合金在分别含有0.1、0.25、0.5、0.75和1 mol/L Na2SO4的1 mol/L NaCl溶液中的Epit值和临界点蚀温度(CPT)。将0.1和0.25 mol/L Na2SO4添加到1 mol/L NaCl时,虽然对CPT没有显著影响,但60℃时的点蚀电位有所增加。把0.5和0.75 mol/L Na2SO4加入到1 mol/L NaCl溶液中不仅使Co1.5CrFeNi1.5Ti0.5Mo0.1合金在80℃时的点蚀电位提高,而且CPT值从60℃分别提高到70和80℃。抑制腐蚀的原理是适当溶度的SO
加到溶液中,由于Cl-和SO
的电迁移率相似[103],离子会在合金表面竞争吸附,通过改变活性表面位点的pH值或离子含量,起到点蚀抑制剂的作用。
3 结论和展望
(1) BCC结构的HEAs具有优异的强度和硬度,在BCC结构HEAs中分别加入适量的Ti和Mo,可以提高合金的耐蚀性能,但是过量的添加反而会降低其耐蚀性能。
(2) FCC结构的HEAs具有优良的塑性和耐蚀能力,Ni和Co等元素易形成致密钝化膜,有利于提高合金的耐蚀性能;过量的Mo会导致枝晶间析出σ相,发生电偶腐蚀。
(3) BCC + FCC结构的HEAs兼具两种晶体结构的特点,加入Al倾向于生成BCC相,过量的Al会使钝化膜中Cr2O3成分减少,致密性下降;加入Cu元素倾向于生成FCC相,引起元素偏析,产生电偶腐蚀,这些都会导致耐蚀性能降低。加入Cr可以提高耐蚀性能,但过量加入会产生负面影响。
(4) HEAs中添加具有HCP晶体结构的合金元素,有利于形成HCP相。常见的CrFeCoNiNb x 和CrFeCoNiTi x 合金具有HCP结构,HCP结构的HEAs中加入Nb和Ti可以提高其耐蚀性能。
(5) 适当的热处理可以降低元素偏析和相组成差异,提高组织的均匀性;阳极处理可以优化合金的表面结构和成分;添加缓蚀剂同样可以提高合金的耐蚀性能。
(6) HEAs打破了传统合金以单一元素作为主元的限制,具有十分广阔的应用前景。在功能方面,HEAs可用作储氢材料、抗辐射材料、精密电阻等。同时,HEAs还具有非常优异的耐蚀性能和力学性能。但和传统金属材料相比,HEAs的腐蚀机理研究起步较晚,还没引起足够的重视,其在各种环境中的腐蚀机理尚需更深入和系统的研究,对于各个相的腐蚀机理还需进一步研究和完善。对于合金元素之间的相互作用的研究也相对较少,若对元素之间的相互作用和机理探究透彻,可以降低制备高性能合金的成本,这对于促进HEAs的工程化应用具有重要意义。另外,HEAs中合金元素含量高,容易出现偏析,在保证力学性能和耐蚀性能的基础上,亟需开发更高效的制备工艺。同时,为了揭示HEAs的腐蚀机制,后续研究工作需加强腐蚀细节的原位观察。
参考文献
[1]
Li H, Zhang L Y, Zhang B Y, et al.
Microstructure characterization and mechanical properties of stainless steel clad plate
[J]. Materials, 2019, 12: 509
[本文引用: 1]
[2]
Peng Z C, Zheng Z B, Wang X Q, et al.
The microstructure effect on fatigue and dwell-fatigue in a nickel-based superalloy
[J]. Intermetallics, 2022, 151: 107740
[本文引用: 1]
[3]
Zhao P P, Song Y W, Dong K H, et al.
Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62
[J]. Mater. Corros., 2019, 70: 1745
[本文引用: 1]
[4]
Yeh J W, Chen S K, Lin S J, et al.
Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
[J]. Adv. Eng. Mater., 2004, 6: 299
[本文引用: 1]
[5]
Miracle D B, Senkov O N.
A critical review of high entropy alloys and related concepts
[J]. Acta Mater., 2017, 122: 448
[本文引用: 1]
[6]
Ye Y F, Wang Q, Lu J, et al.
High-entropy alloy: challenges and prospects
[J]. Mater. Today, 2016, 19: 349
[7]
Miracle D, Majumdar B, Wertz K, et al.
New strategies and tests to accelerate discovery and development of multi-principal element structural alloys
[J]. Scr. Mater., 2017, 127: 195
[8]
Senkov O N, Miller J D, Miracle D B, et al.
Accelerated exploration of multi-principal element alloys with solid solution phases
[J]. Nat. Commun., 2015, 6: 6529
DOI PMID [本文引用: 1]
[9]
Ikeda Y, Grabowski B, Körmann F.
Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys
[J]. Mater. Charact., 2019, 147: 464
DOI [本文引用: 1]
[10]
Gao M C, Zhang B, Guo S M, et al.
High-entropy alloys in hexagonal close-packed structure
[J]. Metall. Mater. Trans., 2016, 47A: 3322
[本文引用: 1]
[11]
Fu Y, Li J, Luo H, et al.
Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys
[J]. J. Mater. Sci. Technol., 2021, 80: 217
DOI [本文引用: 1]
[12]
Varalakshmi S, Rao G A, Kamaraj M, et al.
Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying
[J]. J. Mater. Sci., 2010, 45: 5158
[本文引用: 1]
[13]
Qiu Y, Thomas S, Gibson M A, et al.
Corrosion of high entropy alloys
[J]. npj Mater. Degrad., 2017, 1: 15
[本文引用: 2]
[14]
Senkov O N, Scott J M, Senkova S V, et al.
Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy
[J]. J. Mater. Sci., 2012, 47: 4062
[本文引用: 1]
[15]
Nascimento C B, Donatus U, Ríos C T, et al.
A review on corrosion of high entropy alloys: exploring the interplay between corrosion properties, alloy composition, passive film stability and materials selection
[J]. Mater. Res., 2022, 25: e20210442
[本文引用: 1]
[16]
Geetha M, Singh A K, Asokamani R, et al.
Ti based biomaterials, the ultimate choice for orthopaedic implants-A review
[J]. Prog. Mater. Sci., 2009, 54: 397
[本文引用: 1]
[17]
Long M, Rack H J.
Titanium alloys in total joint replacement—a materials science perspective
[J]. Biomaterials, 1998, 19: 1621
DOI PMID [本文引用: 1]
[18]
Niinomi M.
Recent metallic materials for biomedical applications
[J]. Metall. Mater. Trans., 2002, 33A: 477
[本文引用: 1]
[19]
Yang W, Liu Y, Pang S J, et al.
Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy
[J]. Intermetallics, 2020, 124: 106845
[本文引用: 1]
[20]
Senkov O N, Scott J M, Senkova S V, et al.
Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy
[J]. J. Alloy. Compd., 2011, 509: 6043
[本文引用: 1]
[21]
Dirras G, Lilensten L, Djemia P, et al.
Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy
[J]. Mater. Sci. Eng., 2016, 654A: 30
[22]
Tüten N, Canadinc D, Motallebzadeh A, et al.
Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti-6Al-4V substrates
[J]. Intermetallics, 2019, 105: 99
[本文引用: 1]
[23]
Hua N B, Wang W J, Wang Q T, et al.
Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys
[J]. J. Alloy. Compd., 2021, 861: 157997
[本文引用: 1]
[24]
Evans A G, He M Y, Suzuki A, et al.
A mechanism governing oxidation-assisted low-cycle fatigue of superalloys
[J]. Acta Mater., 2009, 57: 2969
[本文引用: 1]
[25]
Tong J, Dalby S, Byrne J, et al.
Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys
[J]. Int. J. Fatigue, 2001, 23: 897
[26]
Eliaz N, Shemesh G, Latanision R M.
Hot corrosion in gas turbine components
[J]. Eng. Fail. Anal., 2002, 9: 31
[本文引用: 1]
[27]
Tsao T K, Yeh A C, Kuo C M, et al.
High temperature oxidation and corrosion properties of high entropy superalloys
[J]. Entropy, 2016, 18: 62
[本文引用: 1]
[28]
Gorr B, Müller F, Azim M, et al.
High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition
[J]. Oxid. Met., 2017, 88: 339
[本文引用: 1]
[29]
He F, Wang Z J, Wu Q F, et al.
Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures
[J]. Scr. Mater., 2017, 126: 15
[本文引用: 1]
[30]
Wu Z, Bei H, Otto F, et al.
Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
[J]. Intermetallics, 2014, 46: 131
[本文引用: 1]
[31]
Senkov O N, Wilks G B, Scott J M, et al.
Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
[J]. Intermetallics, 2011, 19: 698
[本文引用: 1]
[32]
Wang X Z, Wang Y H, Yu J B, et al.
A brief review about perspective and properties of high-entropy alloys
[J]. J. Netshape Form. Eng., 2022, 14(11): 73
[本文引用: 1]
王先珍, 王一涵, 俞嘉彬 等.
高熵合金性能特点与应用展望
[J]. 精密成形工程, 2022, 14(11): 73
[本文引用: 1]
[33]
Gromov V E, Shlyarova Y A, Konovalov S V, et al.
Application of high-entropy alloys
[J]. Steel Transl., 2021, 51: 700
[本文引用: 1]
[34]
Liang H, Qiao D X, Miao J W, et al.
Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater
[J]. J. Mater. Sci. Technol., 2021, 85: 224
DOI [本文引用: 1]
[35]
Hsu Y J, Chiang W C, Wu J K.
Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution
[J]. Mater. Chem. Phys., 2005, 92: 112
[本文引用: 5]
[36]
Zhang Y, Zhou Y J, Lin J P, et al.
Solid-solution phase formation rules for multi-component alloys
[J]. Adv. Eng. Mater., 2008, 10: 534
[本文引用: 1]
[37]
Guo S, Ng C, Lu J, et al.
Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys
[J]. J. Appl. Phys., 2011, 109: 103505
[本文引用: 3]
[38]
Guo S, Liu C T.
Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase
[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
[本文引用: 1]
[39]
Muangtong P, Rodchanarowan A, Chaysuwan D, et al.
The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution
[J]. Corros. Sci., 2020, 172: 108740
[本文引用: 1]
[40]
Zhang B, Wang J, Wu B, et al.
Unmasking chloride attack on the passive film of metals
[J]. Nat. Commun., 2018, 9: 2559
DOI PMID [本文引用: 1]
[41]
Wang F J, Zhang Y, Chen G L, et al.
Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy
[J]. J. Eng. Mater. Technol., 2009, 131: 034501
[本文引用: 1]
[42]
Zhao Y, Wang M L, Cui H Z, et al.
Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys
[J]. J. Alloy. Compd., 2019, 805: 585
[本文引用: 5]
[43]
Yu Y, Wang J, Li J S, et al.
Characterization of BCC phases in AlCoCrFeNiTi x high entropy alloys
[J]. Mater. Lett., 2015, 138: 78
[本文引用: 1]
[44]
Liu L, Li Y, Wang F H.
Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl
[J]. Electrochim. Acta, 2007, 52: 7193
[本文引用: 1]
[45]
Liu J, Liu H, Chen P J, et al.
Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding
[J]. Surf. Coat. Technol., 2019, 361: 63
[本文引用: 1]
[46]
Zhou Y J, Zhang Y, Wang Y L, et al.
Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties
[J]. Appl. Phys. Lett., 2007, 90: 181904
[本文引用: 1]
[47]
Wang X F, Zhang Y, Qiao Y, et al.
Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys
[J]. Intermetallics, 2007, 15: 357
[本文引用: 1]
[48]
Hsu W C, Kao W P, Yeh J W, et al.
Effect of Mo on the mechanical and corrosion behaviors in non-equal molar AlCrFeMnNi BCC high-entropy alloys
[J]. Materials, 2022, 15: 751
[本文引用: 3]
[49]
Chang X X.
Composition, microstructure and mechanical properties of FCC-structure high entropy alloys
[D]. Dalian: Dalian University of Technology, 2018
[本文引用: 1]
常晓雪.
FCC结构高熵合金的成分、组织及力学性能研究
[D]. 大连: 大连理工大学, 2018
[本文引用: 1]
[50]
Tsai C W, Chen Y L, Tsai M H, et al.
Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi
[J]. J. Alloy. Compd., 2009, 486: 427
[本文引用: 1]
[51]
Luo H, Li Z M, Mingers A M, et al.
Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution
[J]. Corros. Sci., 2018, 134: 131
[本文引用: 1]
[52]
Wang L T, Mercier D, Zanna S, et al.
Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS
[J]. Corros. Sci., 2020, 167: 108507
[本文引用: 1]
[53]
Zhao R F, Ren B, Cai B, et al.
Corrosion behavior of CoxCrCu-FeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution
[J]. Results. Phys., 2019, 15: 102667
[本文引用: 9]
[54]
Wei L, Wang Z J, Wu Q F, et al.
Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloyin NaCl solution
[J]. Acta Metall. Sin., 2019, 55: 840
[本文引用: 7]
魏 琳, 王志军, 吴庆峰 等.
Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响
[J]. 金属学报, 2019, 55: 840
[本文引用: 7]
[55]
Chou Y L, Yeh J W, Shih H C.
The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5-Ti0.5Mo x in aqueous environments
[J]. Corros. Sci., 2010, 52: 2571
[本文引用: 6]
[56]
Wang W R, Wang J Q, Yi H G, et al.
Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)100 - x Mo x high-entropy alloys
[J]. Entropy, 2018, 20: 908
[本文引用: 1]
[57]
Dai C D, Zhao T L, Du C W, et al.
Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys
[J]. J. Mater. Sci. Technol., 2020, 46: 64
[本文引用: 3]
[58]
Zheng Z Y, Li X C, Zhang C, et al.
Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys
[J]. Mater. Sci. Technol., 2015, 31: 1148
[本文引用: 8]
[59]
Chen Y Y, Hong U T, Shih H C, et al.
Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel
[J]. Corros. Sci., 2005, 47: 2679
[本文引用: 1]
[60]
Li W S, Xing J, Zhang J, et al.
Microstructure and anti-corrosion behavior in 3.5% NaCl of warm compacted and sintered 316L
[J]. Rare Metal Mater. Eng., 2022, 51: 4714
[本文引用: 1]
李文生, 邢 健, 张 杰 等.
温压烧结316L不锈钢组织和耐3.5%NaCl腐蚀行为
[J]. 稀有金属材料与工程, 2022, 51: 4714
[本文引用: 1]
[61]
Farhadi K, Zebhi H, Moghadam P N, et al.
Electrochemical preparation of nano-colloidal polyaniline in polyacid matrix and its application to the corrosion protection of 430SS
[J]. Synthetic Met., 2014, 195: 29
[本文引用: 1]
[62]
Potgieter J H, Olubambi P A, Cornish L, et al.
Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels
[J]. Corros. Sci., 2008, 50: 2572
[本文引用: 1]
[63]
Zhao Y, Cao J Y, Fang Z G, et al.
Application prospects of corrosion-resistant high-entropy alloys in island and reef equipment
[J]. Equip. Environ. Eng., 2021, 18(11): 42
[本文引用: 1]
赵 伊, 曹京宜, 方志刚 等.
耐蚀高熵合金在岛礁装备中的应用前景
[J]. 装备环境工程, 2021, 18(11): 42
[本文引用: 1]
[64]
Raza A, Abdulahad S, Kang B, et al.
Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys
[J]. Appl. Surf. Sci., 2019, 485: 368
DOI [本文引用: 5]
[65]
Shi Y Z, Collins L, Balke N, et al.
In-situ electrochemical-AFM study of localized corrosion of Al x CoCrFeNi high-entropy alloys in chloride solution
[J]. Appl. Surf. Sci., 2018, 439: 533
[本文引用: 6]
[66]
Shi Y Z, Collins L, Feng R, et al.
Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance
[J]. Corros. Sci., 2018, 133: 120
[本文引用: 6]
[67]
Wang S.
Study on the mechanical properties and corrosion resistance of Al x CoFeNiCr1 - x high-entropy alloys
[D]. Taiyuan: North University of China, 2020
[本文引用: 1]
王 帅.
Al x CoFeNiCr1 - x 高熵合金微观组织, 力学性能及耐腐蚀性能研究
[D]. 太原: 中北大学, 2020
[本文引用: 1]
[68]
Shi Y Z, Yang B, Xie X, et al.
Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior
[J]. Corros. Sci., 2017, 119: 33
[本文引用: 1]
[69]
Lee C P, Chang C C, Chen Y Y, et al.
Effect of the aluminium content of Al x CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments
[J]. Corros. Sci., 2008, 50: 2053
[本文引用: 6]
[70]
Hu R, Du J H, Zhang Y J, et al.
Microstructure and corrosion properties of Al x CuFeNiCoCr (x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content
[J]. J. Alloy. Compd., 2022, 921: 165455
[本文引用: 7]
[71]
Wu H, Chen G, Tang X T, et al.
Effect of Cu content on the microstructure and properties of CoCrFeNiMnAlCu x High-entropy alloy
[J]. Nonferrous Met. Eng., 2022, 12(7): 1
[本文引用: 5]
吴 昊, 陈 刚, 唐啸天 等.
Cu含量对CoCrFeNiMnAlCu x 高熵合金微观组织及性能的影响
[J]. 有色金属工程, 2022, 12(7): 1
[本文引用: 5]
[72]
Ren B, Liu Z X, Li D M, et al.
Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution
[J]. Mater. Corros., 2012, 63: 828
[本文引用: 4]
[73]
Chai W K, Lu T, Pan Y.
Corrosion behaviors of FeCoNiCr x (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation
[J]. Intermetallics, 2020, 116: 106654
[本文引用: 4]
[74]
Lin C, Meng L, Tan M T, et al.
Microstructures and properties of Cr x-FeNiCu0.5Ti0.5 high-entropy alloys for corrosion resistance
[J]. Intermetallics, 2023, 153: 107781
[本文引用: 7]
[75]
Chen X, Hu J X, Liu Y, et al.
Corrosion behavior in nitric acid solution and tensile properties of (CuFeNiMn)1 - x Cr x HEAs
[J]. Met. Mater. Int., 2021, 27: 2230
[本文引用: 1]
[76]
Kalsar R, Ray R K, Suwas S.
Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel
[J]. Mater. Sci. Eng., 2018, 729A: 385
[本文引用: 1]
[77]
Crook P.
Corrosion-resistant nickel alloys, Part 3: nickel alloys provide levels of corrosion resistance not possible with other alloys. This is part three of a four-part series about corrosion-resistant nickel alloys
[J]. Adv. Mater. Process., 2007, 165: 45
[本文引用: 2]
[78]
Qiu X W, Liu C G.
Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding
[J]. J. Alloy. Compd., 2013, 553: 216
[本文引用: 6]
[79]
Kao Y F, Lee T D, Chen S K, et al.
Electrochemical passive properties of Al x CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids
[J]. Corros. Sci., 2010, 52: 1026
[本文引用: 1]
[80]
Deng J Q, Cao Z H.
Research progress of High-entropy alloy
[J]. J. Anyang Inst. Technol., 2018, 17(6): 11
[本文引用: 1]
邓景泉, 操振华.
高熵合金的研究进展
[J]. 安阳工学院学报, 2018, 17(6): 11
[本文引用: 1]
[81]
Zhang Z T, Axinte E, Ge W J, et al.
Microstructure, mechanical properties and corrosion resistance of CuZrY/Al, Ti, Hf series high-entropy alloys
[J]. Mater. Design, 2016, 108: 106
[本文引用: 1]
[82]
Zhao Y J, Qiao J W, Ma S G, et al.
A hexagonal close-packed high-entropy alloy: The effect of entropy
[J]. Mater. Des., 2016, 96: 10
[本文引用: 1]
[83]
Rogal Ł, Czerwinski F, Jochym P T, et al.
Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions
[J]. Mater. Design, 2016, 92: 8
[本文引用: 1]
[84]
Tsau C H, Yeh C Y, Tsai M C.
The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys
[J]. Materials, 2019, 12: 3716
[本文引用: 2]
[85]
Wen X, Cui X F, Jin G, et al.
In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding: Alloy design and microstructure evolution
[J]. Surf. Coat. Technol., 2021, 405: 126728
[本文引用: 1]
[86]
Fu J W, Wang J C, Li F, et al.
Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel
[J]. Appl. Phys., 2020, 126A: 126
[本文引用: 1]
[87]
Habazaki H, Ukai H, Izumiya K, et al.
Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6 M HCl solution
[J]. Mater. Sci. Eng., 2001, 318A: 77
[本文引用: 1]
[88]
Liu X C, Wang H F, Liu Y, et al.
The effect of Nb content on microstructure and properties of laser cladding 316L SS coating
[J]. Surf. Coat. Technol., 2021, 425: 127684
[本文引用: 1]
[89]
Wang Z B, Hu H X, Zheng Y G, et al.
Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid
[J]. Corros. Sci., 2016, 103: 50
[本文引用: 1]
[90]
Jia Q.
CrFeCoNiTi x high entropy alloy mechanical properties and corrosion resistance research
[D]. Harbin: Harbin University of Science and Technology, 2015
[本文引用: 3]
贾 强.
CrFeCoNiTi x 高熵合金力学性能及耐腐蚀性能研究
[D]. 哈尔滨: 哈尔滨理工大学, 2015
[本文引用: 3]
[91]
Zhou Z M, Li H Y, Liu Y, et al.
Effect of Ti on the corrosion behavior of (FeCrCoNi)100 - x Ti x alloy
[J]. Corros. Sci., 2022, 209: 110807
[本文引用: 1]
[92]
Izadi M, Soltanieh M, Alamolhoda S, et al.
Microstructural characterization and corrosion behavior of Al x CoCrFeNi high entropy alloys
[J]. Mater. Chem. Phys., 2021, 273: 124937
[本文引用: 1]
[93]
Qiu Y, Thomas S, Fabijanic D, et al.
Microstructural evolution, electrochemical and corrosion properties of Al x CoCrFeNiTi y high entropy alloys
[J]. Mater. Des., 2019, 170: 107698
[本文引用: 1]
[94]
Yang H O, Shang X L, Wang L L, et al.
Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution
[J]. Acta Metall. Sin., 2018, 54: 905
DOI [本文引用: 1]
杨海欧, 尚旭亮, 王理林 等.
单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响
[J]. 金属学报, 2018, 54: 905
DOI [本文引用: 1]
[95]
Parakh A, Vaidya M, Kumar N, et al.
Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy
[J]. J. Alloy. Compd., 2021, 863: 158056
[本文引用: 2]
[96]
Vaidya M, Prasad A, Parakh A, et al.
Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying
[J]. Mater. Des., 2017, 126: 37
[本文引用: 1]
[97]
Ralston K D, Birbilis N.
Effect of grain size on corrosion: a review
[J]. Corrosion, 2010, 66: 075005
[本文引用: 1]
[98]
Zhang X R, Guo J, Zhang X H, et al.
Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution
[J]. J. Alloy. Compd., 2019, 775: 565
[本文引用: 1]
[99]
Lin C M, Tsai H L, Bor H Y.
Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy
[J]. Intermetallics, 2010, 18: 1244
[本文引用: 1]
[100]
Lin C M, Tsai H L.
Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy
[J]. Intermetallics, 2011, 19: 288
[本文引用: 1]
[101]
Lee C P, Chen Y Y, Hsu C Y, et al.
Enhancing pitting corrosion resistance of Al x CrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid
[J]. Thin Solid Films, 2008, 517: 1301
[本文引用: 1]
[102]
Chou Y L, Wang Y C, Yeh J W, et al.
Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions
[J]. Corros. Sci., 2010, 52: 3481
[本文引用: 1]
[103]
Zuo Y, Wang H T, Zhao J M, et al.
The effects of some anions on metastable pitting of 316L stainless steel
[J]. Corros. Sci., 2002, 44: 13
[本文引用: 1]
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414