奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展
2024-08-09 20:39:46 作者:高俊宣,曹晗,匡文军,郑全,张鹏,钟巍华 来源:中国腐蚀与防护学报 分享至:

奥氏体不锈钢因为具有较好的力学性能、加工性能和耐腐蚀性能被选为反应堆堆内构件的主要结构材料。当前核电站的服役寿命正致力于延长至60年或更长时间,堆内构件材料在寿期内将受到高达80 dpa的中子辐照。此时,材料将受到严重的辐照损伤(如:辐照诱导相结构[1]、空洞[2]、位错环[3]等),进而降低其力学性能[2~4]和耐腐蚀性能,导致材料抗应力腐蚀性能(SCC)[1,4~7]降低,并进一步诱发辐照促进应力腐蚀开裂(IASCC)。IASCC是导致轻水堆(LWRs)堆芯部件开裂乃至失效的关键原因之一。自20世纪60年代300系列不锈钢燃料棒包壳[8]第一次发生IASCC事故以来,先后在沸水堆(BWRs)的高应力组件、低应力组件、焊接堆芯管以及压水堆堆内构件等关键部件发现了IASCC现象[8]。


SCC本身是一种应力、环境和材料微观结构等多因素耦合的现象[8],在IASCC中,由于辐照又可与各因素发生相互作用[4],使得其多因素耦合的行为和机制变得更加复杂。此外,水的辐照分解也曾被认为对IASCC有重要影响,但之后的研究表明[9,10],向冷却剂中添加H2可降低辐照分解产物的生成率,从而抑制水的辐解,所以对IASCC几乎无影响。国际上对奥氏体钢的IASCC现象已开展一系列试验研究,以期掌握中子辐照IASCC行为机制,实现对堆内构件老化状态和寿命的有效评估。由于中子辐照样品稀少且具有放射性,国内目前主要开展了基于离子辐照的IASCC试验研究,因为离子辐照效率高、成本低以及感生放射性极低,在IASCC机制研究中颇具优势。但其损伤深度浅、损伤截面不均匀的固有缺点使其在IASCC行为研究中饱受争议。因此相关IASCC试验研究工作亟待开展。本文通过调研总结国内外文献,综述了辐照对奥氏体钢IASCC裂纹萌生、扩展及敏感性变化行为的影响规律,分析了IASCC的微观机理,总结了辐照后退火(PIA)在IASCC研究中的应用,以期为抑制IASCC提供参考。


1 辐照对IASCC行为的影响规律

IASCC导致的失效过程一般会经历裂纹萌生、裂纹扩展和失稳断裂阶段,其中,失稳断裂阶段主要由力学因素控制[11]。因此对IASCC的研究主要集中在裂纹萌生和扩展阶段,也可用应力腐蚀敏感性的变化进行间接表征。


1.1 IASCC 裂纹萌生的行为规律

IASCC裂纹萌生占材料断裂失效过程的大部分时间,是IASCC研究的关键阶段。整个过程又包括先导期(物质发生变化,材料在特定环境中对IASCC敏感)、孕育期(材料存在微观渗透)和缓慢扩展期(裂纹扩展速率远小于裂纹扩展阶段)阶段[12],前两个阶段裂纹深度几乎不发生变化,第三个阶段裂纹缓慢扩展至几十至几百微米处。


裂纹萌生阈值应力是IASCC裂纹萌生行为的常用表征参数,一般通过恒载荷试验结果进行确定。研究表明,裂纹萌生阈值应力随辐照温度、剂量以及剂量率的增加而降低[10];在压水堆一回路水环境中,IASCC裂纹萌生阈值剂量为~3 dpa[10],阈值应力为约40%屈服强度[12],若低于这些阈值,一般认为IASCC裂纹萌生不会发生。


裂纹萌生时间是IASCC裂纹萌生行为的另一个重要表征参数,目前直流电位降(DCPD)试验方法是原位监测裂纹萌生精度最高的方法[13],甚至可以达到几微米的分辨率。Ham等[14]根据质子辐照304L不锈钢的研究结果认为,裂纹萌生时间随辐照剂量的升高而降低,但由于中子辐照成本过高、样品稀缺,试验周期较长以及裂纹萌生位置的随机性导致此结论对于中子辐照样品而言缺乏足够的准确可靠数据支持。


1.2 IASCC 裂纹扩展的行为规律

IASCC裂纹萌生后将继续扩展,最终导致材料的失稳断裂。裂纹扩展速率是表征IASCC裂纹扩展行为的重要参数,一般通过在高温高压水中对CT(紧凑拉伸)试样保持恒定应力强度因子的同时利用DCPD原位测量裂纹长度来实现。


当前研究认为,辐照剂量、屈服强度、应力强度因子K、温度、加载类型是压水堆(低ECP环境)内IASCC裂纹扩展速率(CGR)的关键影响因素,其关系模型如 式1所示[15]:

IASCC CGR随辐照剂量的增加而增加,且在8~10 dpa范围内达到饱和(图1a),值得注意的是,剂量对屈服强度的影响呈现出相同的趋势(图1b);此外,PWRs条件下每种中子辐照合金的CGR均随着应力强度因子(K)的增加呈现出增加的趋势(图2a),但具体的K指数仍受合金添加元素以及服役环境的影响[16];一般而言,在同等的K条件下,CGR随着服役温度的升高而增加(图2b),唯一例外的是合金PS02(+Hf),即掺杂Hf的高纯316L不锈钢(中子剂量9.6 dpa),其在288℃时的CGR比320℃高出约10倍左右。然而,温度对CGR的具体影响还需要在包括等效DH、电导率、ECP和加载历史等变量得到良好控制的实验条件下进一步验证。

图1   IASCC数据中CGR与屈服应力的剂量依赖性[15]

图2   IASCC数据中CGR随应力强度因子和辐照温度的变化规律[16]


此外,由于加热方式、实验室条件、测试过程的不同,辐照奥氏体不锈钢的IASCC CGR数据呈现出较大的分散性[15](图1)。因此,在未来的研究中需要分离出更多的变量,更全面地了解数据分散的原因,比如,评估裂纹尖端应变率、构建识别非预期实验室负载的新方法都可能有助于降低未来统计工作中数据的分散性[17,18]。


1.3 IASCC 敏感性的行为规律

IASCC敏感性是评价堆芯材料抗IASCC性能的重要指标,通常使用慢应变速率拉伸试验(SSRT)数据进行表征。目前研究主要采用中子辐照后样品开展。此外,出于降低研究成本、提高研究效率等方面考虑,也常用离子辐照模拟中子辐照开展IASCC敏感性研究。


中子辐照样品可采用延伸率和晶间断裂百分比(IG%)量化敏感性程度。采用以上实验方法对IASCC敏感性进行研究的结果表明:中子辐照后的总延伸率随着剂量的增加而降低(图3a),并且在10 dpa左右达到饱和,晶间断裂百分比随着剂量的增加而持续增加[19],直到全部形成沿晶断口(图3b)。

图3   中子辐照IASCC敏感性参数随剂量的变化[10,19]


离子辐照IASCC样品只能单面局部受照而且剂量梯度大,因此通常通过裂纹信息(裂纹数量密度、平均长度、长度密度等)和微观组织信息(局部变形程度)等参数对IASCC敏感性进行间接表征。相关研究表明,辐照剂量对上述参数具有明显的正相关效应,即随着辐照剂量增加IASCC敏感性逐渐增大[20]。


基于中子、离子辐照的IASCC试验研究结果均表明,辐照剂量增加会提高IASCC敏感性,且在特定表征参数上存在着剂量饱和值。


综上,辐照促进了IASCC裂纹的萌生与扩展,表现为IASCC敏感性的增加:压水堆一回路水环境中IASCC裂纹萌生阈值剂量为~3 dpa,阈值应力为约40%屈服应力;IASCC CGR饱和剂量为8~10 dpa;中子辐照后样品总延伸率的饱和剂量为~10 dpa,IG%随剂量的增加而持续增长。然而,由于裂纹萌生位置的随机性以及中子辐照样品难以获得,导致裂纹萌生时间与剂量的相关性缺乏足够且可靠的数据支持;另一方面,不同的实验条件及数据筛选方法导致IASCC CGR数据呈现出很大的分散性。此外,当前大部分关于裂纹萌生与扩展的实验数据均偏向于工程目的,如裂纹萌生阈值剂量、阈值应力、失效时间等,缺乏对IASCC的机理探索及理论支撑,因此有必要围绕IASCC微观机理开展深入研究。


2 IASCC 机制研究

IASCC是一种复杂的现象,由辐照、应力、水化学等多种因素共同作用产生,局部变形、晶界氧化、辐照硬化、辐照诱导偏析(RIS)、辐照肿胀等因素都有助于引发IASCC[21],然而目前还无法确定何种因素起主导作用。


2.1 局部变形

局部变形导致IASCC的机理在于:辐照产生的缺陷以及低层错能合金会大幅降低运动位错交滑移的可能性,导致位错运动局域化增强,诱发位错通道(DC)[7,22]。位错通道是奥氏体钢局部变形的主要方式,也是位错运动阻力最小的路径。一方面,位错通道中位错密度高,一个新启动的位错通道传输至晶界会导致晶界附近位错塞积,当对样品施加较高的应力时,更多的位错将会加入位错队列,在某一时刻,先导位错会被并入晶界,成为外源晶界位错(EGBD),并进一步分解为晶界位错(GBD)。随着应力作用下的晶格位错被不断“挤压”至晶界,造成晶界位错上的应力不断增大,当其达到一定程度时,会发生剧烈剪切应变,引起残余应变集中,导致邻近晶粒的位错源开动,从而促进局部晶界滑移(晶界变形)或楔形裂纹成核,引起试样表面保护性氧化膜破裂,导致IASCC裂纹萌生或现有裂纹扩展。另一方面,位错通道与晶界(GB)的作用方式包括连续DC-GB作用和非连续DC-GB作用[23],前者易发生在HH型晶界处,而后者倾向于在LL型晶界处产生。非连续DC-GB交界处产生的法向应力往往高于连续DC-GB交界处[24](图4a),导致较高的局部应力集中[25],IGSCC裂纹更容易产生[23~25](图4a和b)。

图4   DC-GB位置处的法向应力及开裂情况统计[23,24]


值得注意的是,拉应力是局部变形的根本因素[7],辐照在其中只起到了促进作用,理论上局部应力状态应比局部变形对IASCC有更好的相关性[8,26],一般认为,只要晶界处应力状态相似,即使局部化程度不同,晶界裂纹性质也相近,这可能是Gupta等[8]在低剂量下观察到质子辐照与重离子辐照裂纹性质相似的原因。


2.2 晶界氧化

越来越多的研究结果表明[27~32],晶界氧化是SCC萌生的必要前驱步骤,其对裂纹萌生的影响直接归因于对晶界强度的影响[33~35]。晶界氧化可以弱化晶界强度,晶界强度随着晶界Fe-Cr尖晶石氧化物的形成而降低,当其低于外加应力时,氧化晶界断裂,裂纹萌生。


有文献指出[36,37],增加辐照剂量可以促进晶界氧化,从而促进IASCC裂纹萌生,这是辐照诱导偏析(RIS)引起的晶界Cr贫化所致。然而,研究[38]表明,当样品不受应力且在模拟PWR一回路水中长期浸泡后,辐照反而提高316L奥氏体钢的晶界抗氧化性,这是因为在辐照晶界处偏析的Si由于高扩散率和对O的亲和性优先向外扩散并被氧化。一方面,晶间氧化物尖端的富Si氧化物可以作为O的临时扩散屏障阻止O的流失;另一方面,Si优先扩散产生的空位极大地提高了Cr向氧化物前沿的传输效率,导致氧化物尖端的Cr含量升高。Si和Cr的富集结合可以增强晶界抗氧化能力,最终导致晶界氧化速率降低。与之情况不同的是,304奥氏体不锈钢的晶界氧化仍然以晶界贫Cr为主导因素,这是因为辐照致Fe、Cr、Ni在晶界处的偏析程度与在位错环处相当,而辐照致Si在304不锈钢位错环处的偏析数倍于晶界处[39],晶界处少量的Si富集既无法阻止O的流失,也无法促进Cr向氧化物前沿扩散,即,对304不锈钢而言,辐照仍然发挥着促进晶界氧化的作用。综上,传统意义上辐照致晶界贫Cr是晶界氧化的主导因素,但晶界及裂尖处Si的富集也在晶界氧化甚至IASCC进程中具有潜在作用,这主要取决于晶界基底元素的含量以及由辐照引起的主要元素(如Cr、Si等)在晶界处的偏析程度。因此,需进一步深入工作以理清辐照影响不同奥氏体钢晶界氧化的具体机制,此外,还需对应力作用下辐照对晶界氧化的影响行为展开进一步研究,以探明应力-辐照-氧化影响IASCC的协同机制。


2.3 辐照硬化

辐照硬化本质上是由辐照后材料内部产生的一系列缺陷阻碍位错运动所引起[40],其促进IASCC的机理在于:(1)辐照硬化导致基体脆性增加,在位错塞积造成局部应力应变提高的情况下,更容易诱发IASCC裂纹萌生[41]。(2)在低于宏观屈服应力的载荷下,辐照硬化使基体更容易在晶界区域发生局部塑性变形,形成位错通道或转变为形变孪晶[42],导致奥氏体钢局部颈缩和均匀伸长率急剧下降[43],诱发IASCC裂纹萌生。


然而有不少研究认为辐照硬化不是主要IASCC机制,如对不锈钢进行的一系列热处理实验表明,在硬化程度相当的情况下,辐照硬化比冷加工硬化产生更多的IGSCC[44],说明硬化不足以解释IASCC开裂敏感性。另外,对辐照材料进行长时间退火发现,硬度变化滞后于IASCC敏感性变化[40,45],说明辐照硬化可能不是IASCC的关键控制因素。


2.4 辐照诱导偏析(RIS)

RIS对IASCC的影响主要表现为晶界处的Cr贫化,贫Cr弱化了晶界处氧化膜的保护作用,增加了金属阳离子的扩散速度和氧空位的渗透性。文献[46~49]在局部氧化渗透与SCC裂纹扩展之间建立了桥梁:Cr贫化引起的局部氧化渗透在增加金属离子的扩散速率、导致氧化电荷密度增加(式(2))的同时,也会使氧化膜上出现微孔[50],导致氧化膜分解的阈值应变降低(式(3));另外,局部氧化渗透还可以通过提高裂尖氧化速率常数来增加SCC扩展速率[51](式(4))。

有研究[52]指出,当Cr含量>17%时,合金抗开裂。然而,最新研究[6]表明,即使晶界Cr含量高于17%,也不能保证合金在LWRs条件下完全抗开裂,因此,辐照诱导晶界处的Cr贫化可能并不是IASCC发生的决定因素,即使晶界处不发生Cr贫化,应力腐蚀裂纹扩展也很容易发生[53,54]。


除了Cr,其他元素偏析也可增加IASCC敏感性。Ni的偏析可引起空洞表面的Ni富集和Cr贫化,使得空洞之间的合金基体趋向于转变为不稳定马氏体相,裂尖α-马氏体的存在可诱发脆性增加[55],从而增加IASCC敏感性。Si和B等元素的偏析,在PWRs的相关电位下也均会发生氧化(SiO2和BO3),并且产物在高温水中很容易溶解,从而产生有缺陷的氧化结构[27,31,54,56,57],因此,晶界处富集的高浓度Si会降低晶界氧化物的抗开裂性[58]。


2.5 辐照肿胀与辐照蠕变

压水堆服役寿命延至60年甚至80年意味着处于堆芯的奥氏体钢将会受到高达80 dpa的中子辐照,高剂量下空洞肿胀导致材料脆化以及“辐照松弛-辐照肿胀”先后发生引起的再加载在材料中产生拉伸或剪切载荷,二者在高温高压水的氧化作用下可共同诱发IASCC裂纹的萌生及扩展。


肿胀往往伴随着一定的辐照蠕变,辐照蠕变在微观结构层面上是一个非破坏性过程,其致力于将任何应力集中或应力梯度降至最低。当材料发生辐照肿胀时,在空洞附近产生的应力场会激活辐照蠕变,辐照蠕变可以松弛恒定的位移应力,例如螺栓应力和焊接残余应力,一般认为,辐照蠕变会增强材料的IASCC抗性。然而,虽然蠕变引起的应力松弛降低了应力的平均大小,但多晶材料中的约束可能产生较高的局部应力,引发大量局部晶界变形,导致局部氧化膜破裂,为裂纹的萌生创造条件[59]。此外,辐照蠕变会产生动态应变,由于动态应变会促进IASCC的萌生[60],所以辐照蠕变也可能发挥了一些作用。


2.6 辐照诱导相变

辐照诱导相变对IASCC的影响主要体现在奥氏体钢中(Ni3Si)、G相[61]、δ相[62]、马氏体相以及α相的变化上。


辐照可促进相(Ni3Si)的形成,该相是一种L12结构的金属间化合物,凭借高Si含量形成的Si氧化膜具有一定的耐腐蚀和抗氧化性[63],但SiO2在高温水中易溶解,形成的缺陷结构与相极差的延展性[64]共同降低了相的IASCC抗性;相(Ni3Si)被认为是G相的前体,G相是一种复杂金属间化合物,它广泛存在于奥氏体不锈钢焊缝金属(具有奥氏体基体和一定量铁素体组成的双相结构[65,66])中,通过促进铁素体的硬化来降低焊缝金属的力学性能及抗应力腐蚀性能。


辐照加速了δ相的分解,δ相具有很强的SCC抗性(即使在Cl-浸蚀的情况下[67~75]),其机理主要包括以下3种:


(1) 电化学效应:γ相易氧化,导致裂尖部分钝化,形成阳极,δ相不易氧化,形成阴极,γ/δ界面构成的微电偶腐蚀电池加剧γ相的氧化,使裂纹尖端严重钝化,导致裂尖应变/应力集中降低,裂尖扩展速率降低。


(2) 机械效应:δ相诱导裂纹在γ/δ相界面处分支,导致裂尖的应力强度因子K降低,裂纹扩展驱动力降低,裂纹扩展受阻[74],然而,也有研究表明:δ相会抑制裂纹分支从而抑制裂纹扩展[5](图5a),这可能归因于基体中δ相含量的差异。

图5   δ相对裂纹扩展的影响机理图[74]


(3) 腐蚀缓解效应(图5b):Ti促进了δ的形成[76],并且通过析出TiC来抑制不锈钢在晶界处析出CrC而造成贫Cr区[77,78],其作为稳定的“Cr源”以及其对C、N的捕获(Ti(CN))共同诱导γ/δ相界面处形成富Cr氧化物,抑制γ/δ相界面附近裂纹的进一步氧化。


因此,辐照极大地削弱了δ相抑制SCC的重要作用。


然而,尽管(Ni3Si)相、G相、δ相对IASCC的作用机制已经清晰,但仍有部分相的IASCC机制存有争议,如Fe离子辐照产生的马氏体(bcc)相可抑制304L不锈钢的IASCC扩展[5],但该发现只发生在重离子辐照的情况下,在其它辐照条件下,并未有类似bcc相的报道;此外,辐照也会诱发α相的形成,相关研究[79]认为,α相可以降低奥氏体钢的抗SCC能力,但其具体影响机制未知。因此相关研究有待进一步开展。


2.7 辐照后退火(PIA)在IASCC机制研究中的应用

在辐照条件下,奥氏体不锈钢基体中将形成小缺陷簇、位错环、沉淀和空洞等多种微观缺陷,溶质元素在晶界等缺陷阱处也会发生辐照诱导偏析。这些微尺度的变化被认为是导致晶间裂纹敏感性增加的原因,但由于它们在辐照下同时出现,因此很难分离出确切的机制。由于退火时间与温度的增加可以逐步消除辐照诱导的损伤(位错环、辐照诱导偏析、沉淀物等)[73,80~85],如在400~700℃范围内,辐照诱导形成的G相与α相大幅下降;在500~1000℃范围内,辐照产生的空洞数量大幅减少;而在800~1100℃范围内,辐照致He气泡的密度也在逐步下降至稳定,这为分离出控制IASCC敏感性的主要微观结构特征提供了机会[73]。因此,辐照后退火(PIA)理论上是一种分离IASCC诸多机制的手段。


研究[85,86]指出,随着退火时间的延长以及退火温度的升高,奥氏体钢的IASCC敏感性、辐照硬化、位错通道间距、位错缺陷以及主要元素的偏析程度等检测特征均有不同程度地降低,但并没有任何一种机制随退火条件的变化与IASCC敏感性的变化完全相同(图6)。更具体地说,大多数被检测的特征在500℃退火后的变化很小,其中,IASCC缓解的变化最大,并且位错通道间距表现出与IASCC缓解极为相似的趋势:500℃ 1 h与550℃ 1 h退火后迅速下降,之后保持不变,表明局部变形与IASCC的相关性最强。此外,晶界Si的RIS与IASCC缓解的相关性仅次于局部变形。然而,有研究[6,87]认为,IASCC作用机制优先级为:局部变形>辐照硬化>RIS(Cr),表明在特定条件下的RIS与IASCC的相关性需要被重新审视。

图6   IASCC敏感性和材料辐照诱导的特征随退火条件的变化图[86]


然而,尽管现有相关研究[73,80,85,86]在PIA恢复辐照诱导微观特征的规律上取得了一定进展,得出了部分因素与IASCC的关联程度,但由于退火范围广泛,中子辐照样品稀缺,使得现有工作难以彻底分离影响IASCC的单一微结构与微化学因素,需要进一步设置退火参数以彻底分离单一微观特征,并分析单一微观特征对IASCC的影响机制,从而更好地构建IASCC失效预测模型。


另一方面,由于可以恢复辐照引起的结构变化(图7a)和力学性能的变化[79](图7b),PIA也被认为是降低水环境中辐照材料IASCC敏感性[86](图6)的有效策略之一。然而,研究[54]表明,PIA可以显著抑制加氢水化学(HWC)中的裂纹扩展速率(CGR),但对正常水化学(NWC)中CGR的影响不大(图8),即使它恢复了大部分辐照诱导的微观结构变化,这表明PIA缓解IASCC的作用机制并不是简单地恢复辐照诱导的损伤结构,而很大程度上取决于试验环境与PIA的相互作用。

图7   微观缺陷与力学性能随退火条件的变化[79,85]

图8   辐照至5.9 dpa的304L不锈钢在不同退火条件和不同水环境下的裂纹扩展速率[54]


综上,局部变形与辐照硬化对IASCC的影响机制本质上都是辐照致位错塞积所引起的材料性能变化,然而,晶界应力状态与IASCC的相关性要强于局部变形;晶界氧化是IASCC裂纹萌生的关键步骤;RIS主要通过辐照诱导晶界处Cr的偏析来影响IASCC,然而,许多次要元素的偏析对IASCC的影响机制还没有被很好地理解;辐照肿胀与辐照蠕变相继出现,但二者对IASCC的作用截然相反;辐照诱导相变对IASCC的作用主要体现在奥氏体钢中

(Ni3Si)、G相、δ相、马氏体相以及α相的变化上,但马氏体与α相对IASCC的具体影响机制仍不明确。以上每种机制都可不同程度地促进或抑制IASCC。此外,PIA可以通过调节退火参数来一定程度上恢复辐照诱导产生的微结构与微化学变化,从而得出控制IASCC行为的主导机制。然而,由于实验样品稀缺,退火范围广泛,使得现有研究难以彻底分离辐照诱导的单一微观特征。


3 总结与展望

堆内构件不锈钢的IASCC是核电老化状态评估、寿命管理及许可证延续(LTO)论证的重要内容,目前国内外针对IASCC行为以及敏感性评价进行了大量实验,包括恒载荷、直流电位降监测(DCPD)和慢拉伸等,在IASCC机制方面取得了一系列进展,包括局部变形、晶界氧化、辐照硬化、RIS、辐照肿胀以及辐照诱导相变等,同时关于PIA在IASCC中的应用研究方面也取得了一定进展,包括评价IASCC作用机制的相关性和抑制IASCC的萌生与扩展等,但仍存在一些问题有待解决,主要包括以下几个方面:


(1) 辐照主要影响IASCC裂纹萌生和扩展,但裂纹萌生位置的随机性使得实验观测的裂纹萌生时间精度不高,并且中子辐照条件的缺乏导致裂纹萌生时间与剂量的相关性缺乏足够的可靠数据支持,此外,由于加热方式、实验室条件、测试过程的不同,IASCC CGR数据呈现出很大的分散性,尚需改进并统一IASCC裂纹萌生及扩展的测试和数据筛选、修正及归一化方法,此外,由于中子辐照样品稀缺且试验难度较大,导致中子试验数据较少,工程应用的可靠性差,需进一步在归一化试验的前提下,统计分析中子试验数据,科学构建IASCC失效预测模型。


(2) IASCC机制框架基本完善,但仍然有个别细节仍需进行补充研究,比如晶界处局部变形与应力状态的相互依存关系、应力作用下辐照对晶界氧化的影响规律、RIS与IASCC相关性的有效评价、晶界处次要元素的偏析行为及其对IASCC的作用、马氏体相与α相对IASCC的作用机制等。尽管目前IASCC作用机制的优先级已通过PIA手段得到一定程度地量化,但PIA不能彻底分离辐照诱导的微结构及微化学,导致其在研究单一微观特征对IASCC的作用机制上存在一定局限性。此外,如何阐明各机制间的耦合效应对IASCC的影响是评价堆内构件老化状态以及预测其服役寿命应重点关注的问题。


我国由于中子、质子辐照实验难度大、数据难以获得,一般使用重离子辐照模拟中子辐照的实验环境,尽管在IASCC机制方面取得了一些进展,但并不能满足获得高剂量辐照下对IASCC现象一些规律性认识的要求,距离在实际工况下压水堆堆内构件IASCC行为的预测仍有一段距离,尚需在现有研究的基础上深入开展IASCC行为机理实验研究,充分吸收国外的经验和成果,解决退役材料的热室测试技术,建立离子辐照与中子辐照IASCC行为机制的映射关系,为我国进一步优化核电老化状态评估体系、建立起可用于堆内构件IASCC失效预测模型提供充分的数据支持和可靠的机理研究保障。


参考文献

[1] Wang R S, Xu C L, Liu X B, et al. The studies of irradiation assisted stress corrosion cracking on reactor internals stainless steel under Xe irradiation [J]. J. Nucl. Mater., 2015, 457: 130

[2] Maksimkin O P, Tsai K V, Turubarova L G, et al. Void swelling of AISI 321 analog stainless steel irradiated at low dpa rates in the BN-350 reactor [J]. J. Nucl. Mater., 2007, 367-370: 990

[3] Jin H H, Shin C, Kim D H, et al. Irradiation induced dislocation loop and its influence on the hardening behavior of Fe-Cr alloys by an Fe ion irradiation [J]. Nucl. Instrum. Methods Phys. Res., Sect., 2008, 266B: 4845

[4] Gupta J, Hure J, Tanguy B, et al. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation [J]. J. Nucl. Mater., 2016, 476: 82

[5] Jiao Z, Was G S. Impact of localized deformation on IASCC in austenitic stainless steels [J]. J. Nucl. Mater., 2011, 408: 246

[6] Jiao Z, Was G S. Localized deformation and IASCC initiation in austenitic stainless steels [J]. J. Nucl. Mater., 2008, 382: 203

[7] Gupta J, Hure J, Tanguy B, et al. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel: Heavy ions vs protons [J]. J. Nucl. Mater., 2018, 501: 45

[8] Andresen P L, Was G S. A historical perspective on understanding IASCC [J]. J. Nucl. Mater., 2019, 517: 380

doi: 10.1016/j.jnucmat.2019.01.057

[9] Kodama M, Nishimura S, Morisawa J, et al. Effects of fluence and dissolved oxygen on IASCC in austenitic stainless steels [A]. Proceedings of the Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactor [C]. Monterey, 1991: 948

[10] Chopra O K, Rao A S. A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rates of austenitic stainless steels [J]. J. Nucl. Mater., 2011, 409: 235

[11] Liang D S. Stress-based study on the initiation of stress corrosion cracking of irradiated 304 stainless steel [D]. Shanghai: Shanghai Jiao Tong University, 2020

[11] 梁迪森. 基于应力的辐照304不锈钢应力腐蚀裂纹萌生研究 [D]. 上海: 上海交通大学, 2020

[12] Bosch R W, Vankeerberghen M, Gérard R, et al. Crack initiation testing of thimble tube material under PWR conditions to determine a stress threshold for IASCC [J]. J. Nucl. Mater., 2015, 461: 112

[13] Ritter S, Horner D A, Bosch R W. Corrosion monitoring techniques for detection of crack initiation under simulated light water reactor conditions [J]. Corros. Eng. Sci. Technol., 2012, 47: 251

[14] Ham J, Yoo S C, Lee Y, et al. Dissolved hydrogen concentration and proton irradiation effect on crack initiation behavior of 304L stainless steel [A]. Transactions of the Korean Nuclear Society Virtual Autumn Meeting [C]. Korean, 2021

[15] Eason E D, Pathania R, Jenssen A, et al. Technical basis part 2 for Code Case N-889: reference stress corrosion crack growth rate curves for irradiated austenitic stainless steels in light water reactor environments [J]. J. Pressure Vessel Technol., 2021, 143: 021202

[16] Ashida Y, Flick A, Andresen P L, et al. The key factors affecting crack growth behavior of neutron-irradiated austenitic alloys [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. The Minerals, Metals, and Materials Society, USA, 2011: 1241

[17] Hashimoto T, Koshiishi M. Modification of the FRI crack growth model formulation from a mathematical viewpoint [J]. J. Nucl. Sci. Technol., 2009, 46: 295

[18] Rice J R, Drugan W J, Sham T L. Elastic-plastic analysis of growing cracks [A]. Proceedings of the 12th National Symposium on Fracture Mechanics [C]. St. Louis, MO, 1980: 189

[19] Bosch R W, Van Renterghem W, Van Dyck S, et al. Microstructure, mechanical properties and IASCC susceptibility of stainless steel baffle bolts after 30 years of operation in a PWR [J]. J. Nucl. Mater., 2021, 543:152615

[20] Deng P. Irradiation assisted corrosion and stress corrosion of nuclear-grade 304 stainless steel in high temperature and high pressure water [D]. Hefei: University of Science and Technology of China, 2018

[20] 邓 平. 核级304不锈钢辐照促进高温高压水环境腐蚀与应力腐蚀研究 [D]. 合肥: 中国科学技术大学, 2018

[21] Gupta J. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment [D]. Toulouse: Université de Toulouse, 2016

[22] Fukuya K, Nishioka H, Fujii K, et al. Local strain distribution near grain boundaries under tensile stresses in highly irradiated SUS316 stainless steel [J]. J. Nucl. Mater., 2013, 432: 67

[23] McMurtrey M D, Was G S, Patrick L, et al. Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy [J]. Mater. Sci. Eng., 2011, 528A: 3730

[24] Johnson D C, Kuhr B, Farkas D, et al. Quantitative linkage between the stress at dislocation channel–Grain boundary interaction sites and irradiation assisted stress corrosion crack initiation [J]. Acta Mater., 2019, 170: 166

doi: 10.1016/j.actamat.2019.02.032

[25] Deng P, Sun C, Peng Q J, et al. Study on irradiation assisted stress corrosion cracking of nuclear grade 304 stainless steel [J]. Acta Metall. Sin., 2019, 55: 349

doi: 10.11900/0412.1961.2018.00359

[25] 邓 平, 孙 晨, 彭群家 等. 核用304不锈钢辐照促进应力腐蚀开裂研究 [J]. 金属学报, 2019, 55: 349

[26] Wang S H, Cai Z Y, Li M Z, et al. Numerical simulation on the local stress and local deformation in multi-point stretch forming process [J]. Int. J. Adv. Manuf. Technol., 2012, 60: 901

[27] Du D H, Sun K, Was G S. Crack initiation of neutron-irradiated 304 L stainless steel in PWR primary water [J]. Corros. Sci., 2021, 193: 109902

[28] Swaminathan S, Sun K, Was G S. Decoupling the roles of grain boundary oxidation and stress in IASCC of neutron-irradiated 304L stainless steel [J]. J. Nucl. Mater., 2023, 585: 154604

[29] Moss T, Kuang W J, Was G S. Stress corrosion crack initiation in Alloy 690 in high temperature water [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 16

[30] Scott P M. An overview of internal oxidation as a possible explanation of intergranular stress corrosion cracking of alloy 600 in PWRs [A]. BruemmerS, FordP, WasG. Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems- Water Reactors [M]. Newport Beach, Ca, USA: John Wiley & Sons, Inc., 1999

[31] Kuang W J, Feng X Y, Du D H, et al. A high-resolution characterization of irradiation-assisted stress corrosion cracking of proton-irradiated 316L stainless steel in simulated pressurized water reactor primary water [J]. Corros. Sci., 2022, 199: 110187

[32] Xie J Y, Zhang S H, Dong J Y, et al. Insights into the superior stress corrosion cracking resistance of FeCrAl alloy in high temperature hydrogenated water: the critical role of grain boundary oxidation [J]. Corros. Sci., 2022, 208: 110668

[33] Fujii K, Miura T, Nishioka H, et al. Degradation of grain boundary strength by oxidation in Alloy 600 [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor [C]. The Minerals, Metals, and Materials Society, USA, 2011: 1447

[34] Dugdale H, Armstrong D E J, Tarleton E, et al. How oxidized grain boundaries fail [J]. Acta Mater., 2013, 61: 4707

[35] Stratulat A, Armstrong D E J, Roberts S G. Micro-mechanical measurement of fracture behaviour of individual grain boundaries in Ni alloy 600 exposed to a pressurized water reactor environment [J]. Corros. Sci., 2016, 104: 9

[36] Fukumura T, Fukuya K, Fujii K, et al. Grain boundary oxidation of neutron irradiated stainless steels in simulated PWR water [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors [C]. The Minerals, Metals & Materials Series, USA, 2019

[37] Deng P, Peng Q J, Han E H. Grain boundary oxidation of proton-irradiated nuclear grade stainless steel in simulated primary water of pressurized water reactor [J]. Sci. Rep., 2021, 11: 1371

doi: 10.1038/s41598-020-80600-x pmid: 33446760

[38] Deng P, Pen Q J, Han E H, et al. Study of irradiation damage in domestically fabricated nuclear grade stainless steel [J]. Acta Metall. Sin., 2017, 53: 1588

doi: 10.11900/0412.1961.2017.00117

[38] 邓 平, 彭群家, 韩恩厚 等. 国产核用不锈钢辐照损伤研究 [J]. 金属学报, 2017, 53: 1588

[39] Wang S K, Zhang S H, Xie J Y, et al. Clarifying the mitigation effect of proton irradiation on the intergranular oxidation of 316L stainless steel in high temperature water [J]. Acta Mater., 2022, 241: 118408

[40] Jacobs A J, Wozadlo G P, Gordon G M. Low-temperature annealing: a process to mitigate irradiation-assisted stress corrosion cracking [J]. Corrosion, 1995, 51: 731

[41] Deng P, Sun C, Peng Q J, et al. Review of stress corrosion cracking of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 479

[41] 邓 平, 孙 晨, 彭群家 等. 堆芯结构材料辐照促进应力腐蚀开裂研究现状 [J]. 中国腐蚀与防护学报, 2015, 35: 479

[42] Onchi T, Dohi K, Soneda N, et al. Mechanism of irradiation assisted stress corrosion crack initiation in thermally sensitized 304 stainless steel [J]. J. Nucl. Mater., 2005, 340: 219

[43] Bloom E E. Irradiation strengthening and embrittlement [A]. Conference on Radiation Damage in Metals [C]. Materials Park, OH, 1976: 295

[44] Grossbeck M L, Allen T R, Lott R G, et al. Effects of Radiation on Materials: The 21st International Symposium [M]. West Conshohocken: ASTM International, USA, 2004: 92

[45] Hash M C, Busby J T, Was G S. The effect of hardening source in proton irradiation-assisted stress corrosion cracking of cold worked type 304 stainless steel [A]. Proceedings of the 21st International Symposium on Effects of Radiation on Materials [C]. Arizona, USA, 2004: 92

[46] Shoji T, Lu Z P, Murakami H. Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics [J]. Corros. Sci., 2010, 52: 769

[47] Andresen P L, Ford F P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems [J]. Mater. Sci. Eng., 1988, 103A: 167

[48] Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52: 375

[49] Cui T M, Xu X H, Pan D, et al. Correlating oxidation resistance to stress corrosion cracking of 309L and 308L stainless steel claddings in simulated PWR primary water [J]. J. Nucl. Mater., 2022, 561: 153509

[50] Chen J J, Xiao Q, Lu Z P, et al. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments [J]. J. Nucl. Mater., 2017, 489: 137

[51] Bruemmer S M, Was G S. Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems [J]. J. Nucl. Mater., 1994, 216: 348

[52] Bruemmer S M, Arey B W, Charlot L A. Influence of chromium depletion on intergranular stress corrosion cracking of 304 stainless steel [J]. Corrosion, 1992, 48: 42

[53] Andresen P L, Morra M M. IGSCC of non-sensitized stainless steels in high temperature water [J]. J. Nucl. Mater., 2008, 383: 97

[54] Kuang W J, Hesterberg J, Was G S. The effect of post-irradiation annealing on the stress corrosion crack growth rate of neutron-irradiated 304L stainless steel in boiling water reactor environment [J]. Corros. Sci., 2019, 161: 108183

[55] Zhang K Q, Tang Z M, Hu S L, et al. Effect of cold work and slow strain rate on 321SS stress corrosion cracking in abnormal conditions of simulated PWR primary environment [J]. Nucl. Mater. Energy, 2019, 20: 100697

[56] Li G F, Kaneshima Y, Shoji T. Effects of impurities on environmentally assisted crack growth of solution-annealed austenitic steels in primary water at 325oC [J]. Corrosion, 2000, 56: 460

[57] Andresen P, Morra M. Effects of Si on SCC of irradiated and unirradiated stainless steel and nickel alloys [J]. Corrosion, 2005, 7

[58] Garner F A. Void swelling and irradiation creep in light water reactor (LWR) environments [A]. Tipping P G. Understanding and Mitigating Ageing in Nuclear Power Plants: Materials and Operational Aspects of Plant Life Management (Plim): A volume in Woodhead Publishing Series in Energy [M]. Cambridge: Woodhead Publishing, 2010: 308

[59] Was G S, Ashida Y, Andresen P L. Irradiation-assisted stress corrosion cracking [J]. Corros. Rev., 2011, 29: 7

[60] Lin X D, Peng Q J, Han E H, et al. Irradiation-induced precipitation and inverse coarsening of G-phase in austenitic stainless steel weld metal [J]. Mater. Charact., 2019, 151: 396

[61] Li Z B, Lo W Y, Chen Y R, et al. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel [J]. J. Nucl. Mater., 2015, 466: 201

[62] Kumar P. Influence of microstructure on the corrosion behavior of a Ni-Si alloy [J]. MRS Online Proc. Library, 1984, 39: 537

[63] Liu C T, Oliver W C. Environmental embrittlement and grain-boundary fracture in Ni3Si [J]. Scr. Metall. Mater., 1991, 25:1933

[64] Brooks J A, Williams J C, Thompson A W. Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds [J]. Metall. Trans., 1983, 14A: 1271

[65] Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36: 16

[66] Lu Z P, Shoji T, Dan T C, et al. The effect of roll-processing orientation on stress corrosion cracking of warm-rolled 304L stainless steel in oxygenated and deoxygenated high temperature pure water [J]. Corros. Sci., 2010, 52: 2547

[67] Meng F J, Lu Z P, Shoji T, et al. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations [J]. Corros. Sci., 2011, 53: 2558

[68] Terachi T, Fujii K, Arioka K. Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320oC [J]. J. Nucl. Sci. Technol., 2005, 42: 225

[69] Vankeerberghen M, Weyns G, Gavrilov S, et al. The electrochemistry in 316SS crevices exposed to PWR-relevant conditions [J]. J. Nucl. Mater., 2009, 385: 517

[70] Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811

[70] 孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811

doi: 10.11902/1005.4537.2020.172

[71] Du D H, Wang J M, Chen K, et al. Environmentally assisted cracking of forged 316LN stainless steel and its weld in high temperature water [J]. Corros. Sci., 2019, 147: 69

[72] Manning P E, Duquette D J, Savage W F. Technical Note: the effect of retained ferrite on localized corrosion in duplex 304L stainless steel [J]. Weld. J., 1980, 59: 260-s

[73] Shalaby H M. Failure investigation of 321 stainless steel pipe to flange weld joint [J]. Eng. Fail. Anal., 2017, 80: 290

[74] Wang J M, Su H Z, Chen K, et al. Effect of δ-ferrite on the stress corrosion cracking behavior of 321 stainless steel [J]. Corros. Sci., 2019, 158: 108079

[75] Pickering F B. Physical metallurgical development of stainless steels [A]. Proceedings of the Conference on Stainless Steels 84 [C]. Gothenburg, 1984: 2

[76] Aubrey L S, Wieser P F, Pollard W J, et al. Ferrite Measurement and Control in Cast Duplex Stainless Steels [M]. St. Louis, MO: ASTM International, USA, 1982

[77] Gao J X, Cao H, Zhong W H, et al. Effect of low dose irradiation of heavy ion on electrochemical corrosion and IASCC behavior of austenitic steel [J]. J. Phys.: Conf. Ser, 2023, 2639: 1742

[78] Cao H, Gao J X, Yang W H, Liu C, Li D X, Zhang P, Zheng Q, Zhong W H. Effect of heavy ion irradiation on the electrochemical behavior of 321 stainless steel [J]. NUCL. ENG. DES, 2024, 419: 112972

[79] Gurovich B A, Kuleshova E A, Frolov A S, et al. Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr-10Ni-Ti austenitic stainless steels [J]. J. Nucl. Mater., 2015, 465: 565

[80] Katsura R, Ishiyama Y, Yokota N, et al. Post-irradiation annealing effects of austenitic stainless steels in IASCC [A]. Corrosion `98: Annual Conference and Exposition [C]. San Diego, 1998: 311

[81] Fukuya K, Nakano M, Fujii K, et al. Separation of Microstructural and microchemical effects in irradiation assisted stress corrosion cracking using post-irradiation annealing [J]. J. Nucl. Sci. Technol., 2004, 41: 1218

[82] Jacobs A J, Dumbill S. Effects of low-temperature annealing on the microstructure and grain boundary chemistry of irradiated type 304SS and correlations with IASCC [A]. 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Breckenridge, 1995: 1021

[83] Van Renterghem W, Al Mazouzi A, Van Dyck S. Influence of post irradiation annealing on the mechanical properties and defect structure of AISI 304 steel [J]. J. Nucl. Mater., 2011, 413: 95

[84] van Renterghem W, Konstantinović M J, Vankeerberghen M. Evolution of the radiation-induced defect structure in 316 type stainless steel after post-irradiation annealing [J]. J. Nucl. Mater., 2014, 452: 158

[85] Jiao Z, Hesterberg J, Was G S. Effect of post-irradiation annealing on the irradiated microstructure of neutron-irradiated 304L stainless steel [J]. J. Nucl. Mater., 2018, 500: 220

[86] Hesterberg J, Jiao Z J, Was G S. Effects of post-irradiation annealing on the IASCC susceptibility of neutron-irradiated 304L stainless steel [J]. J. Nucl. Mater., 2019, 526: 151755

[87] Was G S. Localized deformation as a primary cause of irradiation assisted stress corrosion cracking [R]. Ann Arbor, MI (United States): University of Michigan, 2009

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

相关文章
无相关信息