涂层技术作为金属基材表面保护和防腐的重要手段之一,已经广泛应用于人类生产生活的各个方面,并在众多工业和生活领域中发挥着至关重要的作用[1]。涂层不仅能为物体表面增添美观的视觉效果,还能显著增强其耐磨性,并为其赋予独特的功能性。更为关键的是,它能有效隔绝金属基材与腐蚀介质的直接接触,从而大幅减缓或阻止腐蚀的进程。然而,随着防腐蚀涂层所面临的使用环境日益严酷和复杂,如高速飞行的气动冲击、高盐高湿的临海岛礁、风浪汹涌的远洋条件等,涂层承受的挑战也愈发艰巨。在这些极端环境下,撞击、磨损、紫外老化和腐蚀介质的侵蚀等多重因素容易导致涂层出现微小破损。这些难以察觉的微损伤,若未能得到及时修复,将会导致涂层防护能力的不可逆降低,进而造成腐蚀阻隔层失效,金属底材的腐蚀速度加快。特别是在实际应用中,限于检测手段和修复成本的双重制约,微小损伤往往难以被及时有效地修补,这大大增加了金属基材在恶劣环境下遭遇腐蚀的风险,并可能进一步演化为严重的结构问题和安全隐患。面对这一挑战,开发具备自动修复微损伤能力的功能性涂层便成为了科研工作者的重点研究方向。自修复防腐蚀涂层正是在这样的背景下诞生,它不仅保留了传统防腐蚀涂层的基本性能,还通过引入智能响应性结构或材料,使涂层具备了可实现自主修复细微损伤的能力。这种自修复功能极大地提高了涂层的耐久性,延长了其使用寿命,并且为金属基材在面对复杂严酷环境时提供了更加可靠和持久的保护。
1自修复防腐蚀涂层的分类
图1 微胶囊自修复涂层自修复原理[15]
图2 无微胶囊涂层与微胶囊自修复防腐蚀涂层防腐蚀效果对比[24]
图3 普通环氧涂层(划痕)和微胶囊自修复防腐蚀涂层(划痕)在腐蚀环境下30天的变化[25]
图4 不同微胶囊添加量对涂层的自修复效果对比[27]
图5 缓蚀剂微胶囊对涂装涂层的金属的腐蚀电位的影响[35]
图6 修补剂及缓蚀剂的修复、缓释原理及涂层自修复效果[40]
图7 自修复防腐蚀涂层在不同温度下的自修复效果[59]
图8 涂层的自修复效果[78]
图9 SMP型自修复防腐蚀涂层的自修复效果[101]
图10 含有双硫键及氢键的涂层的自修复效果[109]
图11 含动态二硫键和π-π堆积结构涂层的自修复性能[111]
2 两类自修复防腐蚀涂层的比较
表1 外援型自修复防腐蚀涂层与本征型自修复防腐蚀涂层的比较及优化措施
3 应用前景
4 结语
参考文献
[1] 刘登良. 涂料工艺[M]. 4版. 北京: 化学工业出版社, 2010.
[2] YANG Ying, URBAN Marek W. Self-healing polymeric materials[J]. Chemical Society Reviews, 2013, 42(17): 7446-7467.
[3] WU Min, JOHANNESSON Björn, GEIKER Mette. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material[J]. Construction and Building Materials, 2012, 28(1): 571-583.
[4] KÖTTERITZSCH J, HAGER Martin D., SCHUBERT Ulrich S.. One-component intrinsic self-healing polymer for coatings based on reversible crosslinking by Diels-Alder-cycloadditions[C]. ICSHM 2013: Proceedings of the 4th International Conference on Self-Healing Materials, Ghent, Belgium, June 16-20, 2013.
[5] ZHONG Nan, POST Wouter. Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 226-239.
[6] 龚文晶, 熊文涛, 张鸿渐, 等. 聚二甲基硅氧烷基自修复防腐涂层研究进展[J]. 电镀与涂饰, 2023, 42(2): 32-40.
[7] KORDAS, GEORGE, EFTHIMIADOU Eleni K.. Self-Healing Coatings for Corrosion Protection of Metals[M]. The Sol-Gel Handbook - Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH 1, 2015: 3-Volume Set, 487.
[8] QIAN Bei, SONG Zuwei, HAO Long, et al. Self-healing epoxy coatings based on nanocontainers for corrosion protection of mild steel[J]. Journal of the Electrochemical Society, 2017, 164(2): C54-C60.
[9] GARCÍA S J, FISCHER H R, VAN DER ZWAAG S. A critical appraisal of the potential of self healing polymeric coatings[J]. Progress in Organic Coatings, 2011, 72(3): 211-221.
[10] TOOHEY Kathleen S, SOTTOS Nancy R, LEWIS Jennifer A, et al. Self-healing materials with microvascular networks[J]. Nature Materials, 2007, 6(8): 581-585.
[11] 许超, 肖调兵, 乔泽, 等. 智能防腐涂层的研究进展及其在国内核电领域的应用前景[J]. 腐蚀与防护, 2023, 44(4): 65-71, 81.
[12] HUANG Mingxing, YANG Jinglei. Facile microencapsulation of HDI for self-healing anticorrosion coatings[J]. Journal of Materials Chemistry, 2011, 21(30): 11123.
[13] WANG Wei, XU Likun, LIU Feng, et al. Synthesis of isocyanate microcapsules and micromechanical behavior improvement of microcapsule shells by oxygen plasma treated carbon nanotubes[J]. J Mater Chem A, 2013, 1(3): 776-782.
[14] 许栋, 李秋平, 吴霞, 等. 智能自修复防腐涂料研究进展[J]. 现代涂料与涂装, 2020, 23(11): 45-48.
[15] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797.
[16] 刘晓英, 阮文琳, 张育新, 等. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 261-269.
[17] XIE Cheng, CHENG Chuanrei, ZHAO Peng, et al. High-performance self-healing anticorrosion epoxy coating based on microencapsulated epoxy-amine chemistry[J]. Journal of Applied Polymer Science, 2024, 141(11): e55099.
[18] 郭茂莲. 双组份自修复微胶嚢的制备及其应用研究[D]. 天津: 天津工业大学, 2019.
[19] 温礼馨. 反应性微胶囊的制备及其在自愈合涂层构筑中的应用[D]. 杭州: 浙江理工大学, 2021.
[20] WU Wentao, CHU Liangyong, GARCIA Santiago J, et al. Fabrication of graphene oxide-modified self-healing microcapsules for Cardanol-based epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2023, 183: 107777.
[21] 郭孟莹. 自修复涂料用微胶囊的制备及性能表征[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[22] 靳美亮. 用于自修复涂料的微胶囊的研制[J]. 涂层与防护, 2020, 41(6): 13-16, 34.
[23] 董邯海, 程勇, 程庆利, 等. 六亚甲基二异氰酸酯微胶囊的制备及其在自修复涂料中的应用[J]. 表面技术, 2023, 52(4): 272-284.
[24] ADAMS W Taylor, BRECHIN Bryce, TRUONG Thanh-Tam. Preparation and characterization of tungsten oxide fortified poly(urea-formaldehyde) microcapsules for self-healing coatings[J]. Polymer Testing, 2024, 131: 108328.
[25] LI Jianyang, SHI Hongwei, LIU Fuchun, et al. Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection[J]. Progress in Organic Coatings, 2021, 156: 106236.
[26] 金佳赢, 张茗珺, 张琲瑶, 等. 亚麻油微胶囊的制备及环氧涂层的自修复性能[J]. 高分子材料科学与工程, 2022, 38(5): 121-128, 136.
[27] 张青青, 陈亚鑫, 刘仁, 等. 基于聚苯胺微胶囊的双重自修复防腐涂层[J]. 高分子学报, 2023, 54(5): 720-730.
[28] SONG Yan, CHEN Kaifeng, WANG Jingjing, et al. Synthesis of polyurethane/poly(urea-formaldehyde) double-shelled microcapsules for self-healing anticorrosion coatings[J]. Chinese Journal of Polymer Science, 2020, 38(1): 45-52.
[29] LIU Tianhui, ZHAO Yuzeng, DENG Yining, et al. Preparation of fully epoxy resin microcapsules and their application in self-healing epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2024, 188: 108247.
[30] SUN Jiyu, LI Wen, ZHAN Yuchao, et al. Two preparation processes for anti-corrosion and self-healing epoxy coatings containing the poly (calcium alginate) microcapsules loaded with tung oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128600.
[31] 张琲瑶. 微纳米容器负载缓蚀剂的制备及自修复涂层防腐性能研究[D]. 大庆: 东北石油大学, 2023.
[32] ZEA Cristina, ALCÁNTARA Jenifer, BARRANCO-GARCÍA Rosa, et al. Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection[J]. Nanomaterials, 2018, 8(7): 478.
[33] 曹扬. pH敏感型缓蚀剂控释系统的构建及其在自修复有机涂层中的应用[D]. 合肥: 中国科学技术大学, 2022.
[34] LI Jianyang, SHI Hongwei, GU Songhua, et al. A smart anticorrosive coating based on pH-sensitive microspheres fabricated via a facile method for protection of AA2024-T3[J]. Progress in Organic Coatings, 2024, 189: 108259.
[35] GUO Yandong, WU Yuanlong, GUO Tengfei, et al. Preparation of self-healing superhydrophobic polyacrylate coatings based on silica matrix-microcapsules containing corrosion inhibitor for long-term corrosion protection[J]. Progress in Organic Coatings, 2024, 188: 108267.
[36] SIVA T, ANANTHAKUMAR Ramadoss, SATHIYANARAYANAN S. Emerging action of corrosion prevention based on sustained self-healing coatings[J]. Surfaces and Interfaces, 2021, 26: 101440.
[37] DEHGHANI Ali, BAHLAKEH Ghasem, RAMEZANZADEH Bahram, et al. Cyclodextrin-based nano-carrier for intelligent delivery of dopamine in a self-healable anti-corrosion coating[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105457.
[38] CHENG Li, LIU Chengbao, WU Hao, et al. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings[J]. Journal of Materials Science & Technology, 2021, 80: 36-49.
[39] LIU Jianguo, HUANG Wenrui, ZHANG Kailong, et al. Early warning and self-repair properties of o-phenanthroline modified graphene oxide anti-corrosion coating[J]. Progress in Organic Coatings, 2024, 189: 108274.
[40] FENG Yingying, CUI Yexiang, ZHANG Mingjun, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581.
[41] ISMAIL Norhan Ashraf, SHAKOOR R A, AL-QAHTANI Noora, et al. Multilayered LDH/microcapsule smart epoxy coating for corrosion protection[J]. ACS Omega, 2023, 8(34): 30838-30849.
[42] ZHANG Meng, WAN Jieru, WANG Jian, et al. Smart self-healing coating with multiple synergistic effects based on ZIF-11 for corrosion protection of carbon steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133186.
[43] HAO Zhentao, CHEN Si, CHEN Zhiwei, et al. Water-triggered self-healing composite coating: Fabrication and anti-corrosion application[J]. Polymers, 2022, 14(9): 1847.
[44] DAVARPANAH Ali, KERAMATINIA Motahhare, SOROUSH Elham, et al. Improving the polyester powder coating self-healing anti-corrosion properties via the steel surface decoration with Ce-doped-ZIF-8@ZPMn film[J]. Surfaces and Interfaces, 2023, 41: 103144.
[45] LIU Tengfei, LIU Yuanshuang, QU Dingrong, et al. Smart self-healing coating based on the covalent organic frameworks (COF LZU-1) for corrosion protection of steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685: 133246.
[46] ZHANG H H, BIAN H, ZHANG X, et al. Preparation and characterization of hollow ceria based smart anti-corrosive coatings on copper[J]. Surfaces and Interfaces, 2024, 45: 103930.
[47] SUN Wenhui, TANG Erjun, ZHAO Lulu, et al. The waterborne epoxy composite coatings with modified graphene oxide nanosheet supported zinc ion and its self-healing anticorrosion properties[J]. Progress in Organic Coatings, 2023, 182: 107609.
[48] CHEN Zhihao, GONG Bin, LI Xianliang, et al. Intelligent self-healing anti-corrosive coatings with crosslinked conducting polypyrrole hydrogel network[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132078.
[49] BANERJEE Debika, GUO Xiaohang, BENAVIDES Jaime, et al. Designing green self-healing anticorrosion conductive smart coating for metal protection[J]. Smart Materials and Structures, 2020, 29(10): 105027.
[50] JAEHOON Joo, MINJOO Kang, HYOUNG-SEOK Moon, et al. Design and experimental studies of self-healable anti-corrosion coating: Passivation of metal surfaces by silicone oil impregnated porous oxides[J]. Surface & Coatings Technology, 2020, 404: 126595.
[51] LIU Yuping, ZHAN Yuchao, TIAN Limei, et al. Study on the anticorrosion and antifouling performance of magnetically responsive self-healing polyurethane coatings[J]. Progress in Organic Coatings, 2024, 186: 108047.
[52] ASADI Najmeh, NADERI Reza, MAHDAVIAN Mohammad. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating[J]. Corrosion Science, 2019, 151: 69-80.
[53] MAJIDI Rezvan, NOURI Nazanin, KERAMATINIA Motahhare, et al. ZPCC-Zn-Al-LDH surface bilayer; toward designing a durable self-healable nano-structured film with the utmost corrosion resistance[J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 156: 105343.
[54] ZHANG Ming qiu, RONG Min zhi. Self-healing polymers and polymer composites[M]. Hoboken, New Jersey: Wiley, 2011.
[55] 张又豪. 基于可逆共价键的多功能自修复交联型树脂的研究[D]. 苏州: 苏州大学, 2019.
[56] 赵凯锋. 基于Diels-Alder可逆共价键自修复聚合物的制备与性能研究[D]. 青岛: 青岛科技大学, 2017.
[57] 朱丹丹. 基于氢键的自愈合聚合物和超疏水性自修复导电涂层的制备及性能研究[D]. 上海: 上海交通大学, 2015.
[58] FORTUNATO Giovanni, VAN DEN TEMPEL Paul, BOSE Ranjita K. Advances in self-healing coatings based on Diels-Alder chemistry[J]. Polymer, 2024, 294: 126693.
[59] YU Changjiang, WANG Zhanhua, FEI Guoxia, et al. Robust self-healing waterborne polyurethane coatings via dynamic covalent Diels-Alder bonds for corrosion protection[J]. Journal of Polymer Science, 2024, 62(5): 815-825.
[60] YANG Shiwen, DU Xiaosheng, DENG Sha, et al. Recyclable and self-healing polyurethane composites based on Diels-Alder reaction for efficient solar-to-thermal energy storage[J]. Chemical Engineering Journal, 2020, 398: 125654.
[61] FARSHCHI Negin, GEDAN-SMOLKA Michaela, STOMMEL Markus. Preparation and characterization of self-healing polyurethane powder coating using diels-alder reaction[J]. Polymers, 2021, 13(21): 3803.
[62] ZHANG Binbin, FAN Hao, XU Weichen, et al. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion[J]. Journal of Materials Research and Technology, 2022, 17: 2684-2689.
[63] CAI Zhentao, LI Chunping, ZHANG Daquan, et al. An anti-corrosion coating with self-healing function of polyurethane modified by lipoic acid[J]. Journal of Coatings Technology and Research, 2023, 20(2): 713-724.
[64] SHI Biru, WU Haohao, SHENG Dekun, et al. Near-infrared radiation and heat dual-induced self-healing polyurethane with anti-abrasion ability[J]. Progress in Organic Coatings, 2022, 170: 106940.
[65] WU Jianxin, LIU Xiaochun, CHEN Lijing, et al. Rapid self-healing and high-mechanical-strength epoxy resin coatings incorporating dynamic disulfide bonds[J]. ACS Applied Polymer Materials, 2024, 6(8): 4778-4788.
[66] SINGH Poonam, RAO Akula Umamaheshwara, SHARMA Harsh, et al. Microwave assisted self-repairable vitrimeric coating for anti-corrosive applications[J]. Progress in Organic Coatings, 2024, 191: 108411.
[67] GUAN Ying, ZHANG Yongjun. Boronic acid-containing hydrogels: Synthesis and their applications[J]. Chemical Society Reviews, 2013, 42(20): 8106-8121.
[68] LIU Chao, YIN Qing, LI Xi, et al. A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance[J]. Advanced Composites and Hybrid Materials, 2021, 4(1): 138-149.
[69] DE SOUZA Mandy, DUBOIS Charlotte, ZHANG Jane, et al. Water activated healing of thiolene boronic ester coatings[J]. Progress in Organic Coatings, 2020, 139: 105424.
[70] LIU Yongqi, LI Ziyuan, ZHANG Caifu, et al. A self-healing thermoset epoxy modulated by dynamic boronic ester for powder coating[J]. Polymers, 2023, 15(19): 3894.
[71] BRUN M P, BISCHOFF L, GARBAY C. A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids[J]. Angew Chem Int Ed Engl, 2004, 43(26): 3432-3436.
[72] 赵瑞明. 香豆素基环氧树脂的合成、表征及其在自修复涂料中的应用[D]. 广州: 华南理工大学, 2015.
[73] 郭飞. 水性聚氨酯弹性防护涂层的自愈合行为与机理[D]. 大连: 大连海事大学, 2018.
[74] WANG Lin, WANG Xuebin, LIU Tong, et al. Bio-inspired self-healing and anti-corrosion waterborne polyurethane coatings based on highly oriented graphene oxide[J]. NPJ Materials Degradation, 2023, 7: 1-15.
[75] BEACH Maximilian A, DAVEY Tim W, SUBRAMANIAN Priya, et al. A self-healing waterborne acrylic latex coating based on intrinsic hydrogen bonding[J]. Progress in Organic Coatings, 2024, 188: 108189.
[76] CHEN Tao, WU Hao, ZHANG Wanyu, et al. A sustainable body-temperature self-healing polyurethane nanocomposite coating with excellent strength and toughness through optimal hydrogen-bonding interactions[J]. Progress in Organic Coatings, 2023, 185: 107876.
[77] REN Shihong, ZHOU Wenjuan, SONG Kai, et al. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds[J]. Progress in Organic Coatings, 2023, 180: 107571.
[78] 林木松, 彭磊, 张晟, 等. 电缆护套光屏蔽自愈合涂料的制备及性能[J]. 高等学校化学学报, 2019, 40(8): 1766-1774.
[79] HU Zhen, ZHANG Dayu, LU Fei, et al. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions[J]. Macromolecules, 2018, 51(14): 5294-5303.
[80] GUEDES Gabriela, WANG Shiqi, FONTANA Flavia, et al. Dual-crosslinked dynamic hydrogel incorporating{Mo154}with pH and NIR responsiveness for chemo-photothermal therapy[J]. Advanced Materials, 2021, 33(40): e2007761.
[81] LUO Guangbing, PANG Bo, LUO Xingqi, et al. Brominated butyl rubber anticorrosive coating and its self-healing behaviors[J]. Chinese Journal of Polymer Science, 2023, 41(2): 297-305.
[82] WANG Fei, WANG Wentao, ZHANG Cheng, et al. Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing[J]. Composites Part B: Engineering, 2021, 219: 108927.
[83] HU Peng, XIE Qingyi, MA Chunfeng, et al. Fouling resistant silicone coating with self-healing induced by metal coordination[J]. Chemical Engineering Journal, 2021, 406: 126870.
[84] WANG Tong, WANG Wei, FENG Huimeng, et al. Photothermal nanofiller-based polydimethylsiloxane anticorrosion coating with multiple cyclic self-healing and long-term self-healing performance[J]. Chemical Engineering Journal, 2022, 446: 137077.
[85] SHENG Yeming, WANG Minhui, ZHANG Kangping, et al. An “inner soft external hard”, scratch-resistant, self-healing waterborne poly(urethane-urea) coating based on gradient metal coordination structure[J]. Chemical Engineering Journal, 2021, 426: 131883.
[86] LIU Yuetao, ZHAO S, JIANG Yujie, et al. AgNP hybrid organosilicon antifouling coating with spontaneous self-healing and long-term antifouling properties[J]. Industrial And Engineering Chemistry Research, 2023, 62(33): 12999-13008.
[87] SABET-BOKATI Zahra, SABET-BOKATI Kazem, RUSSELL Zhila, et al. Anticorrosion shape memory-assisted self-healing coatings: A review[J]. Progress in Organic Coatings, 2024, 188: 108193.
[88] WANG Lu, ZHANG Fenghua, LIU Yanju, et al. Shape memory polymer fibers: Materials, structures, and applications[J]. Advanced Fiber Materials, 2022, 4(1): 5-23.
[89] DONG Yuhua, WU Kexin, YIN Yuanyuan, et al. Shape memory self-healing coating based on photothermal effect of PPy@PDA nanoparticles[J]. Synthetic Metals, 2021, 280: 116869.
[90] MELGES Fernando Cozim, DA SILVA B P, AOKI I. Evaluation of the self-healing capabilities and resistance to thermal cycling of a shape-memory epoxy coating containing polycaprolactone microspheres[J]. Progress in Organic Coatings: An International Review Journal, 2023, 174: 107322.
[91] WANG Jinke, MA Lingwei, HUANG Yao, et al. Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms[J]. Composites Part B: Engineering, 2022, 231: 109574.
[92] HAO Zhentao, CHEN Si, LIN Zhifeng, et al. Anticorrosive composite self-healing coating enabled by solar irradiation[J]. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1355-1366.
[93] DABALEH Amin, MOHAMMADI Ali, SHOJAEI Akbar, et al. Eco-friendly fumed Nanosilica@Nanodiamond hybrid nanoparticles with dual sustainable self-healing and barrier anticorrosive performances in epoxy coating[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 5075-5092.
[94] MA Lingwei, WANG Jinke, ZHANG Dawei, et al. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers[J]. Chemical Engineering Journal, 2021, 404: 127118.
[95] HUANG Yao, WANG Panjun, TAN Weimin, et al. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection[J]. Journal of Materials Science & Technology, 2022, 107: 34-42.
[96] DONG Yuhua, YIN Yuanyuan, DU Xueyan, et al. Effect of MXene@PANI on the self-healing property of shape memory-assisted coating[J]. Synthetic Metals, 2022, 291: 117162.
[97] CHENG Li, LIU Chengbao, ZHAO Haichao, et al. Hierarchically self-reporting and self-healing photothermal responsive coatings towards smart corrosion protection[J]. Chemical Engineering Journal, 2023, 467: 143463.
[98] ZHANG Jiaojiao, ZHAO Xia, WEI Jinfei, et al. Superhydrophobic coatings with photothermal self-healing chemical composition and microstructure for efficient corrosion protection of magnesium alloy[J]. Langmuir, 2021, 37(45): 13527-13536.
[99] 赵亚梅, 曹婷婷, 张鹏远, 等. 氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性[J]. 复合材料学报, 2023, 40(6): 3405-3416.
[100] DENG Ran, ZENG Liangpeng, WU Qingyun, et al. Self-repairing oil-impregnated gel coatings based on reversible physical cross-linking for anti-fouling and anti-corrosion[J]. Journal of Applied Polymer Science, 2022, 139(16): e51999.
[101] ZHANG Jiaojiao, WEI Jinfei, LI Bucheng, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science, 2021, 594: 836-847.
[102] YANG Jiaxin, WANG Deng, WANG Jihui, et al. Corrosion resistance and near-infrared light induced self-healing behavior of polycaprolactone coating with MIL-53@TA on magnesium alloy[J]. Applied Surface Science, 2022, 585: 152729.
[103] ZHAO Xia, WEI Jinfei, LI Bucheng, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140-149.
[104] THIANGPAK Pakapa, RODCHANAROWAN Aphichart. Self-healing abilities of shape-memory epoxy-contained polycaprolactone microspheres filled with cerium(III) nitrate coated on aluminum 2024-T3[J]. ACS Omega, 2020, 5(40): 25647-25654.
[105] REN Chenhao, HUANG Yao, HAO Wenkui, et al. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength[J]. Journal of Materials Science & Technology, 2022, 101: 18-27.
[106] LI Xianliang, GONG Bin, ZHANG Jie, et al. A photothermal and pH-responsive intelligent PSBG nanofiller for enhancing the barrier and self-healing performance of the SMP coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131899.
[107] LIU Chengbao, CHENG Li, HOU Peimin, et al. Photothermal-responsive wormlike polydopamine-wrapped ethylene-vinyl acetate copolymer toward triple-action self-healing anticorrosion coating[J]. ACS Applied Polymer Materials, 2022, 4(8): 6067-6079.
[108] 赵婉. 基于Diels-Alder反应的漆酚基自修复涂层的制备与性能研究[D]. 咸阳: 西北农林科技大学, 2022.
[109] 菅晓霞, 宋育芳, 梁益, 等. 聚氨酯型可自修复涂料的制备及性能研究[J]. 表面技术, 2020, 49(10): 247-252, 308.
[110] 刘梦月. 低表面能自修复防污涂层的制备与性能研究[D]. 苏州: 苏州科技大学, 2022.
[111] LIANG Ke, YANG Zhengsheng, ZOU Zhiheng, et al. Surface corrosion protection designing of particulate electromagnetic material towards self-healable functional composite[J]. Progress in Organic Coatings, 2024, 188: 108251.
[112] TIAN Wei, GUO Zhiling, WANG Shunli, et al. Hydrogen and DA bond-based self-healing epoxy-modified polyurea composite coating with anti-cavitation, anticorrosion, antifouling, and strong adhesion properties[J]. Journal of Materials Science & Technology, 2024, 187: 1-14.
[113] ZHANG Shunhong, SHEN Yu, LU Jialin, et al. Tannic acid-modified g-C3N4 nanosheets/polydimethylsiloxane as a photothermal-responsive self-healing composite coating for smart corrosion protection[J]. Chemical Engineering Journal, 2024, 483: 149232.
[114] ZHANG Han, SUN Wen, WANG Lida, et al. Photothermal cyclic self-healing coating with long-term corrosion protection based on bifunctional graphene[J]. Chemical Engineering Journal, 2023, 473: 145164.
[115] SUN Xiang, GU Shilong, WANG Luoxin, et al. Multifunctional liquid-like magnetic nanofluids mediated coating with anticorrosion and self-healing performance[J]. Journal of Colloid and Interface Science, 2024, 654(Pt A): 25-35.
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414