摘要
研究了纳米晶CoNiCrFeMn高熵合金在拉伸过程中塑性变形产生的空洞裂纹的演化进程与其拉伸力学性能的相关性,比较了服役温度和平均晶粒尺寸对纳米晶CoNiCrFeMn高熵合金和纳米晶Ni的拉伸力学性能、微结构演化以及位错总长的影响。结果表明:服役温度从低温10 K升到高温1000 K时多晶CoNiCrFeMn高熵合金比单晶CoNiCrFeMn高熵合金屈服应力的降幅分别为14.9%、13.1%和17.4%;多晶Ni比单晶Ni屈服应力的降幅分别为38.9%、30%和32.3%。同时,随着服役温度的提高,纳米晶高熵合金和纳米晶镍的弹性模量和屈服强度呈线性下降趋势。晶界缺陷诱导的内应力和空洞裂纹缺陷,使多晶镍的屈服应力比单晶高熵合金百分比的降幅更大;空洞裂纹缺陷的产生和其外形尺寸改变是材料服役力学性能急剧下降以及纳米晶高熵合金和纳米晶镍拉伸力学性能显著差异的根本原因。拉伸载荷使多晶材料晶粒内先产生极多的内秉堆垛层错,且随着温度的升高大晶粒易分化出细小晶粒并出现晶粒细化的纳观现象。同时,受内应力的诱导多晶高熵合金和多晶镍更易在晶界边缘产生新位错,且位错分布与内应力分布的趋势一致;随着温度的升高热胀冷缩使多晶材料的晶界范围进一步扩张,使应力的分布区域比在低温下更大。
关键词: 金属学; 空洞裂纹; 晶粒尺寸; 温度响应; 拉伸力学性能; 分子模拟
纳米晶(单晶、多晶)高熵合金的独特点阵畸变结构和高熵特性,使其具有高硬度、高强度、抗高温、耐磨损、耐腐蚀以及耐低温等优异性能,在核反应堆燃料棒、太空探测器、深海核潜艇等领域有潜在的应用前景。金属材料的宏观力学性能与其微结构的演化有极大的关联。在原子尺度上捋清纳米晶CoNiCrFeMn高熵合金塑性变形的力学性能,对高熵合金微观结构的调控及其变形机理认知有重要的意义[1]。目前,实验和分子动力学模拟方法已成为研究纳米晶高熵合金材料的塑性变形机制和性能的主要手段[2~5]。但是,仅基于实验法研究纳米晶高熵合金的物性,对仪器的测试精度和内外环境等的要求极为严苛,且所需经费极其高昂。用大规模分子模拟(简称MD)可获与材料的宏观力学性能密切相关的微观结构演化,是探究原子尺度纳米晶高熵合金塑性变形力学行为与变形机制的有力工具[4,5]。
目前对高熵合金力学性能与位错演化特征[6,7]、相变行为[8]、蠕变行为[9]、强韧化机理[10,11]等的研究,已成为热点。Du等[12]的研究结果表明,在循环变形过程中CoCrFeMnNi高熵合金中部分位错相互作用使材料的晶格紊乱,晶格的无序阻碍位错的反向运动而削弱了高熵合金中的包辛格效应。Amar等[13]用激光熔积法制备高强度CrMnFeCoNi高熵合金,发现控制TiC的加入量可调节合金的拉伸性能,拉伸力学性能的提高源于引入的微米级TiC增强相促进了滑移带的传播。Ding等[14]研究了不同服役温度下高熵合金的时效层组织和耐磨性,发现随着温度的升高高熵合金涂层的显微硬度先升高后降低,质量损失则与之相反;在750℃时效后合金镀层的显微硬度和质量损失分别降低了4.3%和11.9%。Huang等[15]指出,C元素的加入提高了CoCrFeNiCx高熵合金的硬度、强度和耐磨性。Xiang等[16]指出,制备工艺参数不同的CrMnFeCoNi高熵合金均为fcc(面心立方)单相固溶体结构;控制激光沉积功率可控制CrMnFeCoNi高熵合金结构中柱状晶和等轴晶的比例,进而控制合金的组织和力学性能。Laplanche等[17]指出,CrMnFeCoNi高熵合金的低温抗拉伸力学性能比室温性能更高;在77 K拉伸应变大于7.4%时孪生主导了材料的塑性变形;293 K时的孪晶仅在接近断裂应变时才能激活,因为此时高熵合金的屈服强度较低,只有较高的应变才能通过加工硬化产生生成孪晶所需的应力。Otto等[18]的研究结果表明,CoCrFeMnNi高熵合金的屈服强度、极限屈服应力和断裂伸长率均随着温度的降低而提高;孪生能提供额外的变形模式适应拉伸的塑性变形,而孪晶不能解释高熵合金屈服强度随着温度的降低而提高。Gludovatz等[19]的结果表明,FeCoCrNiMn合金的室温屈服强度约为400 MPa,屈服应力为760 MPa,断裂延伸率平均值为56%;随着温度的降低该合金的强度、断裂延伸率以及应变硬化率均明显提高。
用分子模拟方法研究纳米晶CoNiCrFeMn高熵合金的拉伸力学性能与空洞裂纹缺陷演化的相关性,比较服役温度和平均晶粒尺寸影响纳米晶Ni、纳米晶CoNiCrFeMn高熵合金的拉伸力学性能、位错分布、微结构演化、位错总长的差异性,有望评估纳米金属材料用于核反应堆燃料棒在极端恶劣服役工况(高温、高压、强辐射)下的力学性能,有重要的理论价值。
1 分子模拟计算
1.1 模拟设置
用分子动力学法对CoNiCrFeMn高熵合金、Ni的拉伸塑性变形行为进行原子尺度分析。图1给出了以晶格常数等于0.352 nm的面心立方镍为主元建立的单晶、多晶高熵合金CoNiCrFeMn。高熵合金的Co、Ni、Cr、Fe、Mn五种元素以等比例20%均匀分布。建模时,模型x、y、z轴晶向依次为[100]、[010]、[001],宽长高分别为5 nm (Lx)×35 nm (Ly)×20 nm (Lz)。基于Voronoi算法在Ni和高熵合金中分别建立含8个、16个、24个晶粒的多晶模型(图1b),模型x、y、z轴皆采用周期性边界条件。拉伸前,基于共轭梯度算法优化模型结构并用随机种子数产生该温度的初始速度,然后基于NPT系综对体系控压并弛豫20 ps,弛豫后的系统能量、温度、压强达到稳态。拉伸时的牛顿方程求解基于NPT系综和Verlet算法,积分步长为1 fs,每500步输出体系的应力-应变和热力学信息。模拟时,沿着Y轴方向以应变率为2×109 s-1对模型实施拉伸加载。基于拉伸应变率2×109 s-1,考虑了温度(10、300、1000 K)变化对纳米晶高熵合金和纳米晶镍拉伸力学性能与塑性变形相变转化的影响。所有计算使用LAMMPS软件完成[20]。
图1 多晶CoNiCrFeMn高熵合金拉伸时的原子尺度模型
1.2 势函数作用
MD计算用MEAM势函数[21]描述纳米晶CoNiCrFeMn高熵合金五种元素间的相互作用
该势函数[22,23]适用于描述塑性变形结构类型的转化特征。 式(1)中为总能量;为嵌入能量,是原子电子密度的函数;为一对原子势相互作用。
1.3 微结构特征识别
用CNA法[24,25]识别纳米晶CoNiCrFeMn高熵合金和Ni受拉伸时的相变结构转化,面心立方(fcc)结构用绿色原子表示,密排六方(hcp)结构用红色原子显示,体心立方(bcc)结构用蓝色原子展示,灰色原子(Other)视为非晶态。
1.4 内应力计算
材料承受的内应力超过其临界值时材料内将出现空洞或裂纹,此类损伤与受到的Von Mises应力密不可分,因此用
中的Von Mises应力表征材料受拉伸时塑性变形产生的内应力集中度[26]。
式(2)中的 分别表示六个方向的正应力与切应力张量。
2 结果和分析
2.1 温度对拉伸力学性能的影响
为了评估使役温度和平均晶粒尺寸对CoNiCrFeMn高熵合金力学性能的影响,图2和图3分别给出了平均晶粒尺寸为0.76 nm的多晶CoNiCrFeMn高熵合金和多晶镍的应力-应变曲线。从图3可见,在拉伸前期单晶和多晶镍的应力与应变呈线性关系。这个结果与文献[27]的趋势一致,间接验证了本文参数设置和数值计算结果的可靠性。图2给出了单晶和多晶CoNiCrFeMn高熵合金拉伸前期的应力与应变也呈现出线性关系。图2还表明,单晶CoNiCrFeMn高熵合金温度为10 K时的力学性能最佳,温度为1000 K时的力学性能最差。随着温度的提高单晶CoNiCrFeMn高熵合金的屈服强度从19.21 GPa降低到9.95 GPa,对应弹性模量从213.44 GPa降低到110.55 GPa;多晶CoNiCrFeMn高熵合金的屈服强度从16.34 GPa下降到8.21 GPa,对应弹性模量从187.81 GPa降低到91.26 GPa。同时,单晶和多晶CoNiCrFeMn高熵合金的屈服应力与弹性模量都随着温度的提高呈线性下降的趋势,与用实验法得到的结论一致 [28]。在使役温度相同的条件下,多晶高熵合金的拉伸力学性能比单晶高熵合金的低,且随着温度从10 K提高到1000 K的过程中降幅的变化为14.9%、13.1%、17.4%,展现出先下降后上升的趋势。这可能与高温激活位错滑移、晶界迁移扩张产生大量非晶和空洞裂纹缺陷的尺寸有关。从图3可见,单晶镍的屈服强度从19.04 GPa下降到12.01 GPa,对应弹性模量从317.33 GPa降低到159.21 GPa;多晶镍的屈服强度从11.62 GPa下降到8.12 GPa,对应的弹性模量从190.49 GPa降低到159.21 GPa。与单晶镍相比,在温度从10 K提高到1000 K的过程中,多晶镍的屈服应力降幅的变化为38.9%、30%、32.3%,同时,随着温度的提高单晶和多晶镍的屈服应力也呈线性下降趋势。对比图2和图3可见,单晶高熵合金的屈服应力高于单晶镍,多晶高熵合金和多晶镍的屈服应力显著低于单晶高熵合金和单晶镍,且与多晶高熵合金相比多晶镍的屈服应力降幅更大。其主要原因,一是高熵合金五种组元的差异和极高的原子间能量势垒产生了严重的晶格扭曲和高密度限域位错,阻碍了位错的滑移和传播;二是多晶材料的晶界缺陷诱导塑性变形的抗拉力学性能降低并改变了多晶材料的微结构演化特征和内应力分布。为详细了解纳米晶高熵合金和纳米晶镍屈服应力的显著不同,图5和图6给出了微结构的演化过程。
图2 服役温度对单晶、多晶CoNiCrFeMn(平均晶粒尺寸0.76 nm)高熵合金拉伸力学性能的影响
图3 服役温度对单晶、多晶Ni(平均晶粒尺寸0.76 nm)拉伸力学性能的影响
图4 室温平均晶粒尺寸对多晶高熵合金和多晶镍拉伸力学性能的影响
图5 室温和应变ε=0.16下的平均晶粒尺寸对多晶Ni和多晶CoNiCrFeMn高熵合金中空洞缺陷的影响
图6 使役温度下多晶Ni不同拉伸应变时空洞缺陷的演化
2.2 晶粒尺寸对拉伸力学性能的影响
图4给出了300 K时平均值为0.76、0.63、0.53 nm的晶粒尺寸对多晶镍和多晶CoNiCrFeMn高熵合金拉伸应力-应变的影响。从图4A和图4B可见,随着平均晶粒尺寸的减小多晶Ni和多晶高熵合金的屈服应力尚无统一下降趋势,平均晶粒尺寸为0.76 nm时多晶高熵合金的屈服应力(12.71 GPa)大于多晶镍(9.77 GPa),而平均晶粒尺寸为0.53 nm和0.63 nm时多晶高熵合金的屈服应力却低于多晶镍。这主要与材料中的空洞缺陷外形尺寸有极大的关系。图5给出了应变
=0.16室温(300 K)条件下多晶镍和多晶高熵合金中的空洞缺陷。从图5可见,多晶Ni的平均晶粒尺寸为0.76 nm时空洞最小,晶粒尺寸为0.53 nm时的空洞增大,晶粒尺寸为0.63 nm的空洞外形最大,与图4D对应的屈服应力规律有很好的一致性。这表明,空洞缺陷的外形大小是影响多晶Ni材料屈服应力的主要原因。多晶高熵合金的空洞缺陷的外形尺寸,也与图4C对应的屈服应力有很好的一致性。此外,平均晶粒尺寸为0.63和0.53 nm时,多晶高熵合金的屈服应力显著低于多晶Ni。图5中两种材料对应的空洞外形尺寸,再次表明空洞缺陷的外形尺寸直接影响了多晶Ni和多晶高熵合金的屈服强度。为了深入了解空洞缺陷产生及繁衍的进程,图6和图7给出了多晶材料的空洞缺陷萌生、繁衍和断裂的演化过程。
图7 1000 K多晶镍晶粒细化演变的进程和裂纹拓展的失效
2.3 微结构特征
图6给出了多晶镍在不同服役温度下(10~1000 K)的空洞缺陷随着拉伸应变的演化进程。从图6可见,在服役温度相同的条件下,多晶镍的空洞缺陷演化历经空洞缺陷萌生、长大、繁殖和断裂四个演化进程。此外,空洞缺陷的萌生起源于多晶的交叉晶界处,表明多晶的晶界极容易受拉伸载荷的影响产生空洞似的裂纹缺陷,使材料的拉伸力学性能急剧下降。另外,多晶镍也容易受载荷诱导在晶粒内产生变形的孪晶堆垛层错,且随应变的增大逐渐增多。从图6还可见,温度对多晶镍的空洞缺陷形状和大小有很大的影响。温度为300 K时产生的空洞缺陷外形形状最大,其次是10 K时产生的空洞缺陷较大,且繁殖数目较多,高温1000 K时产生的空洞缺陷外形形状最小。其主要原因是多晶材料的晶界在高温逐渐软化,使晶界极易扩张和(见图6C黑色箭头)在晶界富集更多的非晶态颗粒(图6C中的黑色箭头)。为了深入了解多晶镍晶粒内的微结构演化进程,图7绘出了1000 K时多晶晶粒的微结构随着应变的详细演化过程。从图7可见,应变=0.1时晶粒1先产生内秉堆垛层错,随后随着应变的增大晶粒2也产生内秉堆垛层错。同时,内秉堆垛层错的产生先充满细小的晶粒,随后较大的晶粒2也逐渐被内秉堆垛层错堆满,此时的裂纹随着应变的增加而扩张;应变=0.6时较大的晶粒2细分出较小的晶粒3,即晶粒随着温度的提高极容易产生更细小的晶粒即晶粒细化,此时裂纹沿着晶界处传播发散,形成对材料的服役寿命致命的缺陷。
为了对比多晶镍的微结构演化,图8给出了在不同使役温度下多晶CoNiCrFeMn高熵合金随着应变的增大微结构的演化信息。从图8可见,在多晶CoNiCrFeMn高熵合金的整个应变过程中都没有产生空洞缺陷,表明多晶高熵合金比多晶镍的延展性更好,且屈服应力也比多晶镍的高。这再次说明,空洞缺陷的产生是材料力学性能急剧下降的主要原因。此外,在使役温度相同的条件下,多晶高熵合金内晶粒细化的微结构演化进程呈现出与多晶镍一致的趋势。温度为10 K时多晶高熵合金晶粒内除了产生孪晶片层,更容易在晶界处富集非晶态(图8A中的蓝色箭头)。晶界处产生的非晶原子比300 K和1000 K下更多,也更容易使位错萌生。同时,在室温300 K和1000 K多晶高熵晶界也极容易舒张,非晶原子也极容易在晶界处产生团簇(图8B和图8C中的箭头),从而阻滞位错的运动。
图8 不同使役温度下多晶CoNiCrFeMn高熵合金不同拉伸应变时微结构的演化
图9绘出了室温300 K时应变=0.3的单晶和多晶CoNiCrFeMn高熵合金以及单晶和多晶镍的微结构信息及径向分布函数随温度的变化。观察图9A和图9B可见,与单晶镍相比,单晶高熵合金内受拉产生塑性变形的非晶原子和内秉堆垛层错较多,且单晶高熵合金具有更好的延展性;与多晶镍相比,多晶高熵合金受拉产生塑性变形的晶界弥散扩张范围更广,多晶的晶界边缘产生内秉堆垛层错也较多。此外,与多晶镍相比多晶高熵合金没有产生空洞缺陷。这表明,在同等条件下多晶高熵合金的晶格畸变使其拉伸时的延展性更好。从图9C和图9D可见,四种模型的径向分布函数随着温度的升高下降,与文献[29]的趋势一致。与单晶高熵合金和单晶镍相比,多晶高熵合金和多晶镍的径向分布函数分别低于单晶高熵合金和单晶镍。这表明,受晶界的影响多晶材料径向分布函数原子间的键合力逐渐减小,外部载荷的拉伸作用也更容易使材料服役的力学性能下降和塑性变形能力变得更弱。
图9 应变 =0.3的纳米晶镍和纳米晶高熵合金室温下的微结构对比,以及径向分布函数随温度的变化
2.4 位错分布和内应力
为了详细了解纳米晶高熵合金和纳米晶镍受拉产生塑性变形的详细位错分布,图10绘制了平均晶粒尺寸为0.76 nm、应变
=0.3的位错分布。从图10A和图10B可见,纳米晶高熵合金和纳米晶镍的位错分布主要以1/6<112>肖特基不全位错为主,还有少量的1/6<110>梯杆位错和1/3<110>Hirth位错,它们是在堆垛层错交叉区的肖克莱不全位错之间的反应产生的,肖特基位错分布最多的是单晶CoNiCrFeMn高熵合金,其次是单晶Ni。与单晶高熵合金和单晶Ni相比,多晶高熵合金和多晶Ni极易在晶界边缘滋生新位错,位错之间在拉伸塑性变形时发生交联耦合作用。随着温度的提高多晶材料中位错的总长比单晶材料的小。此外,纳米晶Ni位错的总长随着温度的升高呈逐渐下降趋势,而纳米晶高熵合金位错的总长随着温度的升高没有一定的规律,实际的表现是300 K时最多,其次是10 K,最后才是1000 K。为了深入了解内应力激活位错产生的机制,图11绘制了纳米晶高熵合金和纳米晶镍对应位错分布的内应力。从图11可见,随着温度的升高纳米晶高熵合金和纳米晶镍的内应力集中度越加明显,温度升高使晶界激活而迁移,且位错运动更易发生,位错的滑移和运动形式变得异常复杂,尤其是在承受高频、高速的循环拉伸载荷时。这与文献[29]对温度影响下纳米压痕氮化镓样品的位错分布趋势一致。多晶Ni和多晶高熵合金晶界处因原子错排和无序化,晶界处的应力集中更高。在拉伸载荷诱导下,晶界处的应力集中促进位错的产生,是位错源萌芽的起源地,更是多晶材料内萌生空洞缺陷裂纹使其失去拉伸力学性能的根本原因(图11)。此外,晶界处更易吸收环境杂质和富集非晶态,从而降低材料的拉伸力学性能。另外,随着温度的升高多晶材料的晶界受热胀冷缩影响其范围进一步扩大,应力分布区域也比低温时更广。在拉伸期间纳米晶Ni和纳米晶CoNiCrFeMn高熵合金承受动态拉伸载荷,多晶Ni首次产生空洞缺陷裂纹。
图10 纳米晶CoNiCrFeMn高熵合金和纳米晶镍中位错的分布类型和位错总长随温度的变化
图11 不同使役温度对应的=0.3时纳米晶CoNiCrFeMn高熵合金和纳米晶镍的应力分布
3 结论
(1) 与单晶高熵合金相比,多晶高熵合金的拉伸力学性能较低,且随着温度从10 K提高到1000 K降幅分别达到14.9%、13.1%和17.4%;与单晶镍相比,随着温度从10 K提高到1000 K,多晶镍的屈服应力降幅分别为38.9%、30%和32.3%,晶界缺陷使多晶镍的屈服应力比单晶高熵合金的整体降幅更大。
(2) 晶粒尺寸为0.76 nm的纳米晶高熵合金和纳米晶镍拉伸时的屈服应力和弹性模量随着温度的提高线性下降。纳米晶高熵合金拉伸时尚无空洞裂纹缺陷产生,表现出良好的延展性;空洞裂纹缺陷是使纳米晶镍的拉伸力学性能随着温度的提高急剧下降的直接原因,且空洞裂纹缺陷的形状和大小直接影响材料的拉伸力学性能;空洞裂纹缺陷的演化历经空洞缺陷的萌生、增大,空洞缺陷繁殖和断裂。
(3) 在纳米晶高熵合金的拉伸过程中尚无空洞裂纹缺陷产生,而纳米晶镍在拉伸中产生空洞裂纹缺陷,表明纳米晶高熵合金比纳米晶镍具有更好的延展性。多晶材料晶粒内充满内秉堆垛层错,且随着温度的提高大晶粒易分化出细小晶粒,出现晶粒细化的纳观现象,在晶界处富集的非晶团簇阻滞位错的运动。
(4) 与单晶高熵合金和单晶镍相比,多晶高熵合金和多晶镍更易在晶界边缘因内应力的诱导而产生位错,是多晶材料内萌生空洞缺陷裂纹使其失效的根本原因。位错的分布与内应力分布有良好的一致性。随着温度的提高多晶材料的晶界范围因热胀冷缩而扩张,以致应力的分布区域比低温时更广。
参考文献
1 Fu W J, Huang Y J, Sun J F, et al. Strengthening CrFeCoNi-Mn0.75Cu0.25 high entropy alloy via laser shock peening [J]. Int. J. Plast., 2022, 154: 103296
doi: 10.1016/j.ijplas.2022.103296
2 Tran N D, Saengdeejing A, Suzuki K, et al. Stability and thermodynamics properties of CrFeNiCoMn/Pd high entropy alloys from first principles [J]. J. Phase Equilib. Diffus., 2021, 42: 606
doi: 10.1007/s11669-021-00900-1
3 Gorban V F, Andreev A A, Chikryzhov A M, et al. The phase composition and mechanical properties of vacuum coatings produced from equiatomic CrFeCoNiMn alloy [J]. Powder Metall. Met. Ceram., 2019, 58: 58
doi: 10.1007/s11106-019-00047-2
4 Zheng T F, Lv J C, Wu Y, et al. Effects of stacking fault energy on the deformation behavior of CoNiCrFeMn high-entropy alloys: a molecular dynamics study [J]. Appl. Phys. Lett., 2021, 119: 201907
doi: 10.1063/5.0069108
5 Tripathi P K, Chiu Y C, Bhowmick S, et al. Temperature-dependent superplasticity and strengthening in CoNiCrFeMn high entropy alloy nanowires using atomistic simulations [J]. Nanomaterials, 2021, 11: 2111
doi: 10.3390/nano11082111
6 Li C, Xue Y F, Hua M T, et al. Microstructure and mechanical properties of Al x Si0.2CrFeCoNiCu1- x high-entropy alloys [J]. Mater. Des., 2016, 90: 601
doi: 10.1016/j.matdes.2015.11.013
7 Wang F J, Zhang Y, Chen G L. Atomic packing efficiency and phase transition in a high entropy alloy [J]. J. Alloys Compd., 2009, 478: 321
doi: 10.1016/j.jallcom.2008.11.059
8 Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement [J]. Mater. Sci. Eng., 2018, 712A: 603
9 Lee D H, Seok M Y, Zhao Y K, et al. Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys [J]. Acta Mater., 2016, 109: 314
doi: 10.1016/j.actamat.2016.02.049
10 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
11 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
12 Du X, Lu X C, Shuang S Y, et al. Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): a molecular dynamics simulation [J]. Int. J. Appl. Mech., 2021, 13: 2150006
doi: 10.1142/S175882512150006X
13 Amar A, Li J F, Xiang S, et al. Additive manufacturing of high-strength CrMnFeCoNi-based High Entropy Alloys with TiC addition [J]. Intermetallics, 2019, 109: 162
doi: 10.1016/j.intermet.2019.04.005
14 Ding L, Wang H X, Quan X M. Microstructure and abrasion resistance of laser cladding CoCrFeNiTiNbB1.25 high-entropy alloys coatings treated by aging [J]. Sci. Adv. Mater., 2021, 13: 1479
doi: 10.1166/sam.2021.4010
15 Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
16 Xiang S, Zhang L, Liu X, et al. Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys [J]. Trans. Mater. Heart Treat., 2018, 39: 29
16 向 硕, 张 雷, 刘 学 等. 激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响 [J]. 材料热处理学报, 2018, 39: 29
17 Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
doi: 10.1016/j.actamat.2016.07.038
18 Otto F, Dlouh? A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
19 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
20 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
21 Lee B J, Shim J H, Baskes M I. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method [J]. Phys. Rev., 2003, 68B: 144112
22 Dong B, Wang X M, Zhu Z L. Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations [J]. J. Atom. Mol. Phys., 2020, 37: 591
22 董 斌, 王雪梅, 朱子亮. FeCoCrCuNi高熵合金裂纹及孔洞结构的力学与微观构象演化的分子动力学模拟研究 [J]. 原子与分子物理学报, 2020, 37: 591
23 Fang Q H, Chen Y, Li J, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys [J]. Int. J. Plast., 2019, 114: 161
doi: 10.1016/j.ijplas.2018.10.014
24 Xiang H G, Li H T, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
25 Qian Y, Shang F L, Wan Q, et al. The mechanism of plastic deformation in intact and irradiated GaN during indentation: a molecular dynamics study [J]. Comput. Mater. Sci., 2018, 149: 230
doi: 10.1016/j.commatsci.2018.03.041
26 Goel S, Luo X C, Reuben R L. Shear instability of nanocrystalline silicon carbide during nanometric cutting [J]. Appl. Phys. Lett., 2012, 100: 231902
doi: 10.1063/1.4726036
27 Li Y C, Jiang W G, Zhou Y. Molecular dynamics simulations of the tensile mechanical response of single crystal/polycrystalline nickel [J]. Rare Met. Mater. Eng., 2020, 49: 2372
27 李源才, 江五贵, 周 宇. 单晶/多晶镍拉伸力学性能的分子动力学模拟 [J]. 稀有金属材料与工程, 2020, 49: 2372
28 Sun S J, Tian Y Z, Lin H R, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
doi: 10.1016/j.jallcom.2019.07.357
29 Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study [J]. Ceram. Int., 2020, 46: 12686
doi: 10.1016/j.ceramint.2020.02.035
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414