聚苯胺涂层技术:为博物馆钢制文物提供防腐蚀新方案 · 上
2024-10-22 13:40:49 作者:PCI可名文化 来源:PCI可名文化 分享至:

 

 

「摘 要

因为从埃及 Al-Qala 军事博物馆获得的钢制矛头具有重要的考古价值,所以本研究的目的是验证在这些矛头上应用无暇聚苯胺涂层的可行性,以保存并保护它们免受腐蚀。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散X射线能谱(EDX)表征矛头的化学成分和微观结构。矛头为钢制结构,因为它们表面有氧化铁涂层和其他腐蚀产物,所以需要在矛头上电化学沉积一层无暇聚苯胺涂层,这种方法既快速又便宜。我们采用多种腐蚀测试来确定涂层的有效性,如电化学阻抗谱和动电位极化(PDP)读数。

 

钢制矛头的研究结果表明,在涂覆无暇聚苯胺后,其抗腐蚀能力有了显著提高,这种涂层起到了屏障的作用,阻挡了水和其他腐蚀性物质,而且减缓了腐蚀副产物在矛头上积聚。总之,我们的研究表明,无瑕疵的聚苯胺涂层可能是古代钢铁文物的一种有效防腐处理方法,而且这种方法简单、廉价而且很容易扩展到大规模的保护工作中。

关键词:保存、环保涂层、腐蚀控制、矛头、表面表征、考古钢矛

*关注我们,下期敬请期待!

作者 | Mohamed M. Megahed 1, Noha H. Elashery, 

Saleh M. Saleh & Ashraf M. El‑Shamy

 

 

 

 

 

一、概 述

 

 

 

 

 

从考古挖掘中找到的钢铁物品必须经过有效的防腐处理,以确保能够为后代保存它们1。本研究特别关注聚苯胺作为保护涂层的潜在用途,以保存如在 Al-Qala 埃及军事博物馆中发现的钢制矛头。考古遗址经常出土包括矛头、剑刃和各种武器在内的钢铁文物2。这些文物在科学界具有巨大的意义,揭示了古代文化及其技术进步3

 

然而,钢铁极易受到腐蚀,这对考古文物的长期保存构成了重大威胁,为了应对这一挑战,保护涂层已经成为一种可行的解决方案,其中聚苯胺是一个很有前途的候选者4聚苯胺是一种导电聚合物,因耐腐蚀特性而闻名,在保护各种金属特别是钢铁方面已经证明了它的有效性5。许多研究已经努力探索了聚苯胺涂层在防止钢制品腐蚀方面的潜力6

 

例如,对涂有聚苯胺的钢片进行了盐雾试验,结果表明,与未涂有聚苯胺的钢片相比,涂有聚苯胺的钢片的腐蚀速度大大降低7。类似地,在不同环境中(包括高湿度和高污染环境),聚苯胺涂层保护钢钉的研究也显示了这种涂层在减轻腐蚀方面的有效性8

 

有趣的是,我们还研究了聚苯胺涂层在保存古代钢铁文物(如中国武器)中的适用性9。这一发现强调了使用聚苯胺涂层作为一种非侵入性方法来保护具有历史和考古意义的钢铁文物的可行性10此研究还探索了聚苯胺涂层在防止混凝土结构内钢筋腐蚀方面的潜在应用11。结果表明,其腐蚀速率显著降低,对结构耐久性有潜在益处12

 

 

此外,我们对在盐水中长时间浸泡涂有聚苯胺的钢表面进行了研究,结果证明了这种涂层即使在恶劣的环境中也有抗腐蚀的能力13。总而言之,聚苯胺涂层有望成为保护古代钢制文物(比如埃及Al-Qala军事博物馆的矛头)免受腐蚀的有价值工具14,这些涂层的优点是易于通过各种方法(包括浸涂)进行涂抹,并且它们在各种条件下都能发挥效用15。虽然这一研究领域相对较新,但早期的研究结果令人鼓舞16。然而,还需要进一步研究才能充分理解聚苯胺涂层在保护行业中的长期影响17。特别是在考古研究的背景下,与古代文物的保存和防腐有关的历史工作有着丰富而不断发展的历史18

 

多年来,在保护文化遗产的坚定承诺和对材料科学不断发展的理解的推动下,文物保护领域取得了重大进展。在此,我们深入探讨了一些塑造这一迷人进展的历史方面和显著的贡献。文物保护的根源可以追溯到具有文化和历史文物价值的古代文明19,例如,古埃及和希腊文明采用了各种方法,比如把文物埋在墓穴中,或者使用蜡、油或树脂等保护涂层来保护文物免受环境腐蚀。

 

在19世纪和20世纪初,一些先驱考古学家和学者开始认识到系统保护措施的重要性20,其中挖掘特洛伊古城的海因里希·谢里曼通过仔细记录和保存已发现的宝藏,这表现出对文物保护的决心21。我们今天所知的保护科学学科出现于20世纪中期,化学和材料科学等科学原理的结合彻底改变了文物保护措施,这标志着一种更加系统化、更科学的文物保护方法的开始22

 

在文物保护中使用聚合物涂层(如聚苯胺)是一个相对较新但前景广阔的方法,聚苯胺具有具有导电性和保护性,在保护金属文物(包括古代钢制矛头)方面备受关注23。这种创新方法提供了一种非侵入性的方式来保护这些历史文物免受腐蚀和变质。随着时间的推移,文物保护领域的发展得益于考古学家、文物保护人员、材料科学家和其他专家之间合作的增加24

 

国际博物馆理事会(ICOM)和联合国教科文组织等国际组织在促进知识交流和制定文物保护道德准则方面发挥了关键作用。虽然取得了重大进展,但是文物保存方向依然存在挑战25。诸如保护涂层的长期稳定性和围绕侵入性保护方法的道德考量等问题继续推动着研究和辩论。无损检测和成像等先进技术的结合为未来的考古研究提供了令人兴奋的可能性26。总之,文物保护和防腐的历史历程证明了人类保护文化遗产的决心27,从古代文明到现代科学创新,这一领域在不断发展以确保子孙后代能够通过保存古代文物来感叹我们过去的丰富多彩。聚苯胺等尖端材料的融合突显了保存措施的动态性质,为考古珍宝的保护带来了光明的未来28

 

 

 

二、材料与方法

 

 

2.1 材料

 

 

 

 

 

2.1.1 钢矛及其状况描述

 

 

 

 

 

在Al-Qala附近发现并现存于埃及军事博物馆的钢制矛头是一件构造精美、保存完好的文物。它是由优质钢材制成的,且长度从6厘米到11厘米不等。矛头的特点是在细长矛杆的末端有一个锋利的尖头,矛刃略微弯曲。专家们认为,钢质武器可能起源于古埃及新王国时代(公元前1550-1070年),它可能是士兵和战士在冲突时期使用的致命武器。因为矛头揭示了古埃及的武器和技术,所以是一件重要的文物,而且矛头的质量和设计显示了当时高超的金属加工和武器装备技术。来自埃及 Al-Qala 军事博物馆的钢制矛头是一件能够揭示我们之前文化的重要历史文物,下表1提供了对埃及Al-Qala军事博物馆的同一个考古钢矛研究的总结。

 

图 1. (a) 处理前受到腐蚀产物侵蚀的矛头组 (b) 所研究矛头的尺寸

 

 

 

 

 

腐烂特性(如厚层红褐色腐蚀产物的存在)会对所选文物产生影响,正如图 1b 所示。我们对矛头进行了调查,以了解它们使用了哪种合金钢、是如何制造的以及在制造过程中留下了哪些腐蚀产物。并且使用金相显微镜、扫描电子显微镜(SEM)和能量色散光谱仪(EDS)、碳/硫分析仪和X射线衍射(XRD)实现这一目标。我们在OLYMPUS-PMTVC2D03043JAPAN金相显微镜的帮助下,可以无需先行蚀刻和抛光,即可对其中一个矛头的横截面进行了检查29


为了进一步了解材料,我们还使用了配备能谱仪(EDS)的扫描电子显微镜(SEM)对同一材料进行了详细研究。此外我们用碳/硫分析仪 ELTRA CS-2000确定矛头中所用钢合金的碳/硫比例。最后利用D8 高级 X 射线衍射仪 X (德国布鲁克公司)对钢表面的腐蚀产物进行XRD分析。

 

 

 

 

 

2.1.2 媒介

 

在这种情况下,选择的腐蚀介质是模拟海水条件的3.5% NaCl溶液,这是为了使研究与古代钢制品(如矛头)可能遇到的现实情况保持一致。虽然ASTM D1384-87溶液通常用于模拟大气腐蚀条件,但我们的目标是研究可能暴露在海水或海岸环境中的相关的文物且更具侵蚀性的腐蚀环境。古代文物通常暴露在各种复杂的历史环境条件下,包括埋葬,陆地暴露,以及在某些情况下的海洋暴露。


我们通过将矛头置于3.5% NaCl溶液中,试图模拟在漫长的历史中可能影响这些文物的恶劣条件,尤其是当它们与海洋或海岸活动有关时。

 

在海水模拟环境中研究矛头的腐蚀行为,可以深入了解无暇聚苯胺涂层在比典型大气腐蚀更具挑战性的条件下的有效性。这种方法使我们能够评估涂层对保护具有不同历史和暴露概况的文物的适用性。一般来说,选择3.5% NaCl介质是为了确保我们的研究与潜在的海洋或沿海历史文物的相关性,并评估涂层在更具侵略性的腐蚀环境中的性能。

 

 

 

 

 

2.2方法

 

 

 

 

 

2.2.1 腐蚀技术

 

 

 

 

 

我们使用一个普通的三电极Pyrex玻璃电池和连接到Autolab计算机的Autolab电位仪/恒流仪PGSTAT302N进行所需的电化学测量。将银/氯化银参比电极、铂箔对电极和1cm2低碳钢工作电极分别浸入有聚苯胺保护层和没有聚苯胺保护层的3.5%氯化钠中。随后,我们在与OCP设备相同的实验装置中测量了电化学阻抗谱(EIS)和动电位极化。并且通过EIS 测量后获得的电位极化曲线,研究了聚苯胺浓度对极化的影响。

 

在电位范围为-1600~200mV,速率为1mVs−1的且室温条件下,我们对不同浓度的聚苯胺进行极化测量,而且通过分析阳极和阴极线性Tafel分支的交会点,可以确定腐蚀系统的腐蚀电流密度和腐蚀电位。此外,我们用Nova 1.10程序将所有阻抗数据拟合到适当的等效电路后,使用Tafel外推技术确定化合物的屏蔽效果。在电化学分析之后,我们利用扫描电子显微镜(SEM)和能量色散x射线光谱仪(EDS)对文物的低碳钢表面进行了形态和化学表征。最后。我们使用了具有Cu-K辐射的X射线衍射仪和X射线荧光NITON/XL8138来研究雕塑腐蚀产物样品中元素组成。这些评估是经过深思熟虑的30

 

 

 

 

 

2.2.2 实验设置、程序和测试方案

 

 

 

 

 

在3.5% NaCl(氯化钠)溶液中,对矛头进行腐蚀测试需要明确的实验设置、步骤和测试方案。下面将详细概述如何进行这种类型的腐蚀测试。

 

实验设置和样品收集:实验设置从材料和设备的准备开始。首先,我们对即将进行测试的考古钢矛头进行模拟。随后,将3.5g氯化钠溶解于100ml蒸馏水中,在玻璃烧杯中制备成3.5% NaCl溶液。然后,我们组装腐蚀测试的关键部件(电化学电池),这种电池通常包括一个工作电极(矛头)、一个参比电极(Ag/AgCl)和一个对电极(铂电极)。为了控制和测量电化学参数,我们采用了恒电位仪/恒流仪并且使用电化学软件用来监控恒电位仪/恒流仪和收集数据。此外,我们还使用重物或夹子将矛头固定在电化学电池内所需的位置,而且确保样品表面没有污染物、油或残留物,这是样品制备的重要步骤。

 

在我们的研究中,我们从埃及Al-Qala军事博物馆购买了钢制矛头,由于这些矛头具有重要考古意义的文物,所以需要保存和防止它们腐蚀。从这些矛头中采集样本时需要遵循标准程序,以维护文物的完整性。我们选中军事博物馆收藏的一组可以追溯到古埃及新王国时代(约公元前1550-1070年)且具有重要历史意义的钢制矛头进行分析。为了表征样品,我们选择能够代表矛头整体状况的区域,并对钢材表面的小块区域进行了精心制备。

 

我们采用适当的方法从这些制备好的区域中收集样品,并使用扫描电子显微镜(SEM)和能量色散X射线光谱仪(EDX)检查表面的小部分,从而提供有关化学成分和微观结构的信息。然后将收集到的样品进行了各种表征技术,包括X射线衍射(XRD)、SEM和EDX,以深入了解其化学成分和微观结构,这些技术能够评估矛头的现状,并确认任何腐蚀产物。

 

在初步表征之后,我们进行了腐蚀测试,将矛头浸入3.5%的NaCl溶液中以模拟腐蚀环境,从而评估聚苯胺涂层保护矛头的有效性。在整个样品收集过程中,我们都非常谨慎以确保采集过程不会损害矛头,从而保持矛头的完整性。最后,我们认识到维护这些文物的历史和考古价值的重要性,因此进行了科学分析,以加强对这些文物的保护。

 

 

 

 

 

2.2.3 实验程序

 

我们将制备好的样品浸入3.5%的NaCl溶液中,待系统在特定时间内达到平衡后,进行开路电位(OCP)测量。随后,我们使用恒电位仪/恒流仪记录OCP。对于电化学阻抗谱(EIS):在一定频率范围内向工作电极施加一个小的扰动信号(如正弦电压),以测量每个频率下的阻抗。在EIS实验后,分析得到的阻抗数据以提取有关腐蚀特性的信息,包括极化电阻和电容。在动电位极化(PDP)实验中,将工作电极的电位从初始电位扫至最终电位,并测量每个电位点的电流响应,从而得到极化曲线用于测定腐蚀速率、腐蚀电位和其他相关的电化学参数。我们还使用专业软件对电化学数据进行分析,以确定腐蚀速率、极化电阻和其他电化学参数。

 

此外,我们对各种测试和方法的结果进行了比较分析,以全面了解矛头的腐蚀行为,并且提供了实验的具体细节,识别基于样品类型、可用的电化学设备和研究目标等因素的潜在变化。值得注意的是,我们还讨论了观察到的腐蚀机制以及 NaCl 溶液对模拟样品耐腐蚀性的影响,而且将与保存或保护矛头腐蚀有关的任何观察或发现也纳入分析中。

 

 

 

 

 

2.3 保护程序

 

 

 

 

 

使用聚苯胺涂层对古代钢制矛头进行保存和防腐保护是一项细致而高效的工作。以下是这种保存方法所涉及的关键步骤和程序。

 

 

 

 

 

2.3.1材料与设备


古老的钢制矛头、所需浓度的聚苯胺溶液(例如10 ppm,、25 ppm、50 ppm或100 ppm)、适合浸泡的容器手套和防护装备,干净的无绒布及通风的工作区。

 

程序:

 

准备矛头仔细检查每一个古老的钢制矛头,以评估其状况和腐蚀程度,并且记录任何可见的损坏,如生锈或表面污染物。如有必要,使用软毛刷或布轻轻地进行清洁,以清除松散的碎片或污垢,但是避免使用可能损坏文物的侵略性清洁方法。

 

聚苯胺浓度的选择:根据每个钢矛头的具体需要,确定合适的涂层聚苯胺浓度。浓度可能会根据文物的状况和腐蚀敏感性而变化。

 

浸泡在聚苯胺溶液中:准备装满所选聚苯胺溶液的容器,将每个钢矛头浸入到聚苯胺溶液中,并且确保它们完全被淹没。浸泡时间可根据所需的保护级别而有所不同。需要确保矛头是悬挂的,而不是靠在容器的底部或侧面,以防止涂层不均匀。

 

监测和干燥:在浸泡过程中定期检查文物,以监测进展。一旦达到所需的涂层时间后,小心地将矛头从聚苯胺溶液中取出,让矛头在通风良好的地方风干,但是避免将它们暴露在阳光直射或极端温度下。

 

检查和附加涂层(如有必要):在干燥之后,评估聚苯胺涂层的质量和覆盖率。如果需要达到所需的保护水平,可再涂一层。为了获得最佳效果,可能需要重复浸泡和干燥的步骤。

 

记录和存储:记录保存过程,包括聚苯胺浓度、浸泡时间及任何有关涂层效果的观察。将保存好的钢制矛头存放在温度和湿度稳定的可控环境中,以防止进一步腐蚀。此外,也可以使用带有穿孔的聚乙烯袋创造一个可控的微环境。

 

定期检查和维护:定期检查保存的矛头是否有腐蚀或变质的迹象。如有必要,可重复保护程序,以维持涂层的保护。

 

2.3.2 重要的注意事项

 

保护程序应由受过培训的文物保护人员或具有文物保护专业知识的专业人员执行。聚苯胺的浓度和浸泡时间的选择应基于仔细评估,如果可能的话,应咨询专家。我们应该控制保存条件,包括温度、湿度和光照,以防止进一步腐蚀。聚苯胺涂层保护古代钢制矛头是一种非侵入性的有效方法,可确保其长久保存,供后人研究和欣赏。

 

-未完待续,下篇敬请期待-

#参考文献(滑动查看):

 

1. Frank, H. Good year, archaeological site science. pp 131–132 (1988).

2. Yang Sook, K. & Istvan, S. Cleaning of corroded iron artifacts using pulsed TEA CO2 and Nd: YAG lasers. J. Cult. Herit. 4, 129–133 (2003).

3. Hefter, G., North, A. & Tan, S. Organic corrosion inhibitors in neutral solutions; part-I Inhibition of steel, copper, and aluminum by straight chain carboxylates. Corrosion 53(8), 657–667. https://doi.org/10.5006/1.3290298 (1997).

4. Alkharafi, F. M., El-Shamy, A. M. & Ateya, B. G. Comparative effect of tolytriazole and benzotriazole against sulfide attack on copper. Int. J. Electrochem. Sci. 4, 1351–1364 (2009).

5. Mirambet, F., Reguer, S., Rocca, E., Hollner, S. & Testemale, D. A. Complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed

for the preservation of metallic artifacts. Appl. Phys. A 99, 341–349 (2010).

6. Sherif, E. M., Abbas, A. T., Gopi, D. & El-Shamy, A. M. Corrosion and corrosion inhibition of high strength low alloy steel in 2.0 M sulfuric acid solutions by 3-amino-1,2,3-triazole as a corrosion inhibitor. J. Chem. https://doi.org/10.1155/2014/538794 (2014).

7. Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M. & Rodriguez-Chacon, M. A. Lanthanide compounds as environmentally friendly corrosion inhibitors of aluminum alloys: A review. Corros. Sci. 40(11), 1803–1819. 00077-8 (1998).

8. Sabirneeza, A. A. F., Geethanjali, R. & Subhashini, S. Polymeric corrosion inhibitors for iron and its alloys: A review. Chem. Eng. Commun. 202(22), 232–244. https://doi.org/10.1080/00986445.2014.934448 (2015).

9. Sherif, E. M., Abbas, A. T., Halfa, H. & El-Shamy, A. M. Corrosion of high strength steel in concentrated sulfuric acid pickling solutions and its inhibition by 3-amino-5-mercapto-1, 2, 3-triazole. Int. J. Electrochem. Sci 10, 1777–1791 (2015).

10. Dillmann, P., Beranger, G., Piccardo, P. & Matthiessen, H. Corrosion of Metallic Heritage Artefacts: Investigation, Conservation, and Prediction of Long-Term Behavior (Elsevier, 2014).

11. El-Shamy, A. M., Shehata, M. F. & Ismail, A. I. M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. J. Appl. Clay Sci. 114, 461–466. https://doi.org/10.1016/j.clay.2015.06.041 (2015).

12. Singh, P., Srivastava, V. & Quraishi, M. A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J. Mol. Liquids 216(1), 164–173. https://doi.org/10.1016/j.molliq.2015.12.086 (2016).

13. Farag, H. K., El-Shamy, A. M., Sherif, E. M. & El Abedin, S. Z. Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid. Zeitschrift für Physikalische Chemie 230(12), 1733–1744. https://doi.org/10.1515/zpch-2016-0777 (2016).

14. Elsayed, E. M., Eessaa, A. K., Rashad, M. M. & El-Shamy, A. M. Preparation and characterization of ZnO thin film on anodic Al2O3as a substrate for several applications. Egypt. J. Chem. 65(10), 119–129. https://doi.org/10.21608/ejchem.2022.110382.5021 (2022).

15. El-Shamy, A. M., Farag, H. K. & Saad, W. M. Comparative study of removal of heavy metals from industrial wastewater using clay and activated carbon in batch and continuous flow systems. Egypt. J. Chem. 60(6), 1165–1175. https://doi.org/10.21608/ejchem.2017.1606.1128 (2017).

16. Liu, A. M., Ren, X. F., Wang, B., Zhang, J., Yang, P. X., Zhang, J. Q., An, M. Z. Complexing agent study via computational chemistry for environmentally friendly silver (2014).

17. El-Shamy, A. M., Shehata, M. F., Metwally, H. I. M. & Melegy, A. Corrosion and corrosion inhibition of steel pipelines in montmorilonitic soil filling material. Silicon 10(6), 2809–2815. https://doi.org/10.1007/s12633-018-9821-4 (2017).

18. Sanatkumar, B., Nayak, J. & Shetty, N. Influence of 2-(4-chlorophenyl)-2-oxoethyl benzoate on the hydrogen evolution and corrosion inhibition of 18 Ni 250 grade weld aged maraging steel in 1.0 M sulfuric acid medium. Int. J. Hydrog. Energy 37(11), 9431–9442. https://doi.org/10.1016/j.ijhydene.2012.02.165 (2012).

19. Giumlia, M. A., Williams, A. Studi metallografici ‘in situ’ sull’armatura della Basilica della Beata Vergine delle Grazie, Udine, Aquileia Nostra, LXXV Udine, Aquileia, 394–422 (2004).

20. El-Shamy, A. M. Control of corrosion caused by sulfate-reducing bacteria. In Microbes in process, pp. 337–362 (2014).

21. Scharff, W. & Huesmann, I. A. Accelerated decay of metal soil finds due to soil pollution. Metal 95, 17–20 (1997).

22. Ateya, B. G., Al Kharafi, F. M., El-Shamy, A. M., Abdalla, R. M. Electrochemical oxidation of hydrogen sulfide in geothermal fluids under high temperature and pressure. In ACS National Meeting Book of Abstracts 2008 236th National Meeting and Exposition of the American Chemical Society, ACS 200817 August 2008 through 21 August (2008).

23. Ateya, B. G., Alkharafi, F. M., El-Shamy, A. M., Saad, A. Y. & Abdalla, R. M. Electrochemical desulphurization of geothermal fluids under high temperature and pressure. J. Appl. Electrochem. 39, 383–389. https://doi.org/10.1007/s10800-008-9683-3 (2009).

24. Abdelshafeek, K. A., Abdallah, W. E., Elsayed, W. M., Eladawy, H. A. & El-Shamy, A. M. Vicia faba peel extracts bearing fatty acids moieties as a cost-effective and green corrosion inhibitor for mild steel in marine water: Computational and electrochemical

studies. Sci. Rep. 12(1), 20611. https://doi.org/10.1038/s41598-022-24793-3 (2022).

25. Abd Elkarim, A. M., El-Shamy, A. M., Megahed, M. M. & Kalmouch, A. Evaluation of the inhibition efficiency of a new inhibitor on leaded bronze Statues from Yemen. Arctic J. 71(1), 2–33 (2018).

26. Cano, E. et al. Electrochemical characterization of organic coatings for protection of historic steel artifacts. J. Solid State Electr. 14, 453 (2010).

27. Eessaa, A. K., El-Shamy, A. M. & Reda, Y. Fabrication of commercial nanoporous alumina by low voltage anodizing. Egypt. J. Chem.61(1), 175–185. https://doi.org/10.21608/ejchem.2017.2189.1175 (2018).

28. Satri, V. Green Corrosion Inhibitors: Theory and Practice (Wiley, 2011).

29. El-Shamy, A. M., Abdelfattah, I., Elshafie, O. I. & Shehata, M. F. Potential removal of organic loads from petroleum wastewater and its effect on the corrosion behavior of municipal networks. J. Environ. Manag. 219, 325–331. https://doi.org/10.1016/j.jenvm

an.2018.04.074 (2018).

30. Elban, W. L., Borst, M. A., Roubachewsky, N. M., Kemp, E. L. & Tice, P. C. Metallurgical assessment of historic wrought iron: US custom house, wheeling, West Virginia. Assoc. Preserv. Technol. 29, 27–34 (1998).

31. Bramfitt, B. L., Benscoter, A.O. Metallographer’s guide: Practices and procedures for irons and steels, USA (2002).

32. Bussell, M. Use of iron and steel in buildings. In Structures & Construction in Historic Building Conservation (ed. Forsyth, M.) 173–191 (Blackwell Publishing Ltd, 2007).

33. Reda, Y., El-Shamy, A. M. & Eessaa, A. K. Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130. Ain Shams Eng. J. 9(4), 2973–2982. https://doi.org/10.1016/j.asej.2018.08.004 (2018).

34. Al-Otaibi, M. S. et al. Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab. J. Chem. 7, 340–346 (2014).

35. El-Kashef, E., El-Shamy, A. M., Abdo, A., Gad, E. A. M. & Gado, A. A. Effect of magnetic treatment of potable water in looped and dead-end water networks. Egypt. J. Chem. 62(8), 1467–1481. https://doi.org/10.21608/ejchem.2019.7268.1595 (2019).

36. Zajec, B., Leban, M. B., Lenart, S., Gavin, K. & Legat, A. Electrochemical impedance and electrical resistance sensors for the evaluation of anticorrosive coating degradation. Corros. Rev. 35, 65–74 (2017).

37. Abbas, M. A., Zakaria, K., El-Shamy, A. M. & El Abedin, S. Z. Utilization of 1-butylpyrrolidinium chloride ionic liquid as an ecofriendly corrosion inhibitor and biocide for oilfield equipment: combined weight loss, electrochemical and SEM studies Z. Phys. Chem. 235(4), 377–406. https://doi.org/10.1515/zpch-2019-1517 (2019).

38. Xia, D. H. et al. Assessing atmospheric corrosion of metals by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique. Sens. Actuat. B Chem. 252, 353–358 (2017).

39. Shehata, M. F., El-Shafey, S., Ammar, N. A. & El-Shamy, A. M. Reduction of Cu+2 and Ni+2 ions from wastewater using mesoporous adsorbent: Effect of treated wastewater on corrosion behavior of steel pipelines. Egypt. J. Chem. 62(9), 1587–1602. https://doi.org/10.21608/ejchem.2019.7967.1627 (2019).

40. Scott, D. A. & Eggert, G. Iron and Steel in Art: Corrosion, Colorants, Conservation 145–147 (Archetype Publications, 2009).

41. El-Shamy, A. M., Soror, T. Y., El-Dahan, H. A., Ghazy, E. A. & Eweas, A. F. Microbial corrosion inhibition of mild steel in salty water environment. Mater. Chem. Phys. 114(1), 156–159. https://doi.org/10.1016/j.matchemphys.2008.09.003 (2009).

42. Zohdy, K. M., El-Shamy, A. M., Gad, E. A. M. & Kalmouch, A. The corrosion inhibition of (2Z,2′Z)-4,4′-(1,2-phenylene bis (azanediyl)) bis (4-oxobut-2-enoic acid) for carbon steel in acidic media using DFT. Egypt. J. Pet. 28(4), 355–359. https://doi.org/10.1016/j.ejpe.2019.07.001 (2019).

43. Ma, C. et al. Electrochemical noise monitoring of the atmospheric corrosion of steels: Identifying corrosion form using wavelet analysis. Corros. Eng. Sci. Technol. 52, 432–440 (2017).

44. Reda, Y., El-Shamy, A. M., Zohdy, K. M. & Eessaa, A. K. Instrument of chloride ions on the pitting corrosion of electroplated steel alloy 4130. Ain Shams Eng. J. 11, 191–199. https://doi.org/10.1016/j.asej.2019.09.002 (2020).

45. Cano, E., Lafuente, D. Corrosion inhibitors for the preservation of metallic heritage artifacts. In Corrosion and conservation of cultural heritage metallic artefacts; Elsevier: New York, NY, USA, 570–594 (2013).

46. Reda, Y., Zohdy, K. M., Eessaa, A. K. & El-Shamy, A. M. Effect of plating materials on the corrosion properties of steel alloy 4130. Egypt. J. Chem. 63(2), 579–597. https://doi.org/10.21608/ejchem.2019.11023.1706 (2020).

47. Mohamed, W. A. & Mohamed, N. M. Testing coatings for enameled metal artifacts. Int. J. Conserv. Sci. 8, 15–24 (2017).

48. Mohamed, O. A., Farghali, A. A., Eessaa, A. K. & El-Shamy, A. M. Cost-effective and green additives of pozzolanic material derived from the waste of alum sludge for successful replacement of Portland cement. Sci. Rep. 12(1), 20974. https://doi.org/10.1038/s41598-022-25246-7 (2022).

49. Shehata, M. F., El-Shamy, A. M., Zohdy, K. M., Sherif, E. S. M. & El Abedin, S. Z. Studies on the antibacterial influence of two ionic liquids and their corrosion inhibition performance. Appl. Sci. 10(4), 1444. https://doi.org/10.3390/app10041444 (2020).

50. El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E. & El-Bindary, R. A. Optimization of the influencing variables on the corrosion property of steel alloy 4130 in 3.5 wt.% NaCl solution. J. Chem. https://doi.org/10.1155/2020/9212491 (2020).

51. Rodgers, B. A. The Archaeologist’s Manual for Conservation 186–200 (Kluwer Academic/Plenum Publishers, 2004).

52. Devanathan, M. A. V. & Tilak, B. V. K. The structure of the electrical double layer at the metal–solution interface. Chem. Rev. 65, 635–684 (1965).

53. Parsons, R. Electrical double layer: Recent experimental and theoretical developments. Chem. Rev. 90, 813–826 (1990).

54. Kolb, D. M., Rath, D. L., Wille, R. & Hansen, W. N. An ESCA study on the electrochemical double layer of emersed electrodes.

Ber. Bunsenges. Phys. Chem. 87, 1108–1113 (1983).

55. Brown, M. A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte–nanoparticle interface. Phys. Rev. X 6, 011007 (2016).

56. El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E. & El-Bindary, R. A. Box-Behnken design to enhance the corrosion resistance of high strength steel alloy in 3.5 wt% NaCl solution. Mor. J. Chem. 8(4), 788–800. https://doi.org/10.48317/IMIST.PRSM/morjc

hem-v8i4.21594 (2020).

57. Mills, D., Picton, P. & Mularczyk, L. Developments in the electrochemical noise method (ENM) to make it more practical for assessment of anti-corrosive coatings. Electrochim. Acta 124, 199–205 (2014).

58. El-Shamy, A. M. A review on biocidal activity of some chemical structures and their role in mitigation of microbial corrosion. Egypt. J. Chem. 63(12), 5251–5267. https://doi.org/10.21608/ejchem.2020.32160.2683 (2020).

59. ASTM b499–09, Standard Test Method for Measurement of Coating Thicknesses by the Magnetic Method: Nonmagnetic Coatings on Magnetic Basis Metals; ASTM International: West Conshohocken, PA, USA (2014).

60. Megahed, M. M., Youssif, M. & El-Shamy, A. M. Selective formula as a corrosion inhibitor to protect the surfaces of antiquities made of leather-composite brass alloy. Egypt. J. Chem. 63(12), 5269–5287. https://doi.org/10.21608/ejchem.2020.41575.2841 (2020).

61. ASTM e104–02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions; ASTM International: West Conshohocken, PA, USA (2012).

62. Megahed, M. M., Abdel Bar, M. M., Abouelez, E. S. M. & El-Shamy, A. M. Polyamide coating as a potential protective layer against corrosion of iron artifacts. Egypt. J. Chem. 64(10), 5693–5702. https://doi.org/10.21608/ejchem.2021.70550.3555 (2021).

63. Mabbutt, S., Mills, D. J. & Woodcock, C. P. Developments of the electrochemical noise method (ENM) for more practical assessment of anti-corrosion coatings. Prog. Org. Coat. 59, 192–196 (2007).

64. Zohdy, K. M., El-Sherif, R. M. & El-Shamy, A. M. Corrosion and passivation behaviors of tin in aqueous solutions of different pH. J. Bio Tribo-Corros. 7(2), 1–7. https://doi.org/10.1007/s40735-021-00515-6 (2021).

65. Pham, T. D. From fuzzy recurrence plots to scalable recurrence networks of time series. EPL-Europhys. Lett. 118, 20003 (2017).

66. El-Shamy, A. M. & Abdel Bar, M. M. Ionic liquid as water soluble and potential inhibitor for corrosion and microbial corrosion for iron artifacts. Egypt. J. Chem. 64(4), 1867–1876. https://doi.org/10.21608/ejchem.2021.43786.2887 (2021).

67. Cazares-Ibanez, E., Vazquez-Coutino, G. A. & Garcia-Ochoa, E. Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper. J. Electroanal. Chem. 583, 17–33 (2005).

68. Zohdy, K. M., El-Sherif, R. M., Ramkumar, S. & El-Shamy, A. M. Quantum and electrochemical studies of the hydrogen evolution findings in corrosion reactions of mild steel in acidic medium. Upstream Oil Gas Technol. 6, 100025. https://doi.org/10.1016/j.upstre.2020.100025 (2021).

69. Wadsworth, F. B., Heap, J. M. & Dingwell, D. B. Friendly fire: Engineering a fort wall in the iron age. J. Archaeol. Sci. 67, 7–13 (2016).

70. Gad, E. A. & El-Shamy, A. M. Mechanism of corrosion and microbial corrosion of 1,3-dibutyl thiourea using the quantum chemical calculations. J. Bio Tribo-Corros. 8, 71. https://doi.org/10.1007/s40735-022-00669-x (2022).

71. Oudbashi, O., Emami, S. M., Ahmadi, H. & Davami, P. Micro-stratigraphical investigation on corrosion layers in ancient bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Herit. Sci. 1, 21–31 (2013).

72. Abbas, M. A., Ismail, A. S., Zakaria, K., El-Shamy, A. M. & El Abedin, S. Z. Adsorption, thermodynamic, and quantum chemical investigations of an ionic liquid that inhibits corrosion of carbon steel in chloride solutions. Sci. Rep. 12, 12536. https://doi.org/10.1038/s41598-022-16755-6 (2022).

73. Abdel-Karim, A. M., El-Shamy, A. M. & Reda, Y. Corrosion and stress corrosion resistance of Al Zn alloy 7075 by nano-polymeric coatings. J. Bio- Tribo-Corros. 8, 57. https://doi.org/10.1007/s40735-022-00656-2 (2022).

74. El-Shamy, A. M., Cathodic protection in the oil and gas industries. In Corrosion and Materials in the oil and gas industry, pp. 489–510 (2016).

75. Jegdic, B., Radovanavic, S. P., Ristic, S. & Alil, A. Corrosion Processes nature and composition of corrosion products on iron artefacts of weaponry. Sci. Tech. Rev. 61(2), 50–56 (2011).

76. Abdel-Karim, A. M. & El-Shamy, A. M. A review on green corrosion inhibitors for protection of archeological metal artifacts. J. Bio- Tribo-Corros. 8, 35. https://doi.org/10.1007/s40735-022-00636-6 (2022).

77. Webber, C. L. Jr. Recurrence Quantification Analysis: Theory and Best Practices (Springer, 2014).

78. Landolt, D. Corrosion and Surface Chemistry of Metals, Lausanne, Switzerland (ISBN 978-2-940222-11-7), 119–179 (2007).

79. Mouneir, S. M., El-Hagrassi, A. M. & El-Shamy, A. M. A review on the chemical compositions of natural products and their role in setting current trends and future goals Egypt. J. Chem. 65(5), 491–506. https://doi.org/10.21608/ejchem.2021.95577.4486 (2022).

80. Loeper-Attia, M. A. A Proposal to Describe Reactivated Corrosion of Archaeological Iron Objects. In Corrosion of Metallic Heritage Artefacts: Investigation, Conservation, and Prediction For Long-Term Behavior (eds Dillmann, P. et al.) 190–202 (Woodhead Publishing, 2007).

81. Reda, Y., Yehia, H. M. & El-Shamy, A. M. Microstructural and mechanical properties of Al-Zn alloy 7075 during RRA and triple aging. Egypt. J. Pet. 31, 9–13. https://doi.org/10.1016/j.ejpe.2021.12.001 (2022).

82. Branzoi, F., Branzoi, V. & Licu, C. Corrosion inhibition of carbon steel in cooling water systems by new organic polymers as green inhibitors. Mater. Corros. Werkstoffe Korrosion 65(6), 637–647. https://doi.org/10.1002/maco.201206579 (2014).

83. Elsayed, E. M., Eessaa, A. K., Abdelbasir, S. M., Rashad, M. M. & El-Shamy, A. M. El-Fabrication, characterization, and monitoring the propagation of nanocrystalline ZnO thin film on ITO substrate using electrodeposition technique. Egypt. J. Chem. 66(2), 33–43. https://doi.org/10.21608/ejchem.2022.126134.5595 (2023).

84. El-Shamy, A. M. & Mouneir, S. M. Medicinal materials as eco-friendly corrosion inhibitors for industrial applications: A review. J. Bio Tribo-Corrosion 9(1), 3. https://doi.org/10.1007/s40735-022-00714-9 (2023).

85. Zohdy, K. M., El-Sherif, R. M. & El-Shamy, A. M. Effect of pH fluctuations on the biodegradability of nanocomposite mg-alloy in simulated bodily fluids. Chem. Paper 77(3), 1317–1337. https://doi.org/10.1007/s11696-022-02544-y (2023).

86. Alwaleed, R. A., Megahed, M. M., Elamary, R. B., El-Shamy, A. M. & Ali, Y. S. Remediation mechanism of microbial corrosion for iron artifacts buried in soil by using allium sativum (garlic extract) as a natural biocide. Egypt. J. Chem. 66(6), 291–308. https://doi.org/10.21608/ejchem.2022.158454.6850 (2023).

87. Eessaa, A. K. & El-Shamy, A. M. Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectr. Eng. 279, 112061. https://doi.org/10.1016/j.mee.2023.112061 (2023).

88. Eessaa, A. K., Elkady, O. A. & El-Shamy, A. M. Powder metallurgy as a perfect technique for preparation of Cu-TiO2 composite by identifying their microstructure and optical properties. Sci. Rep. 13(1), 7034. https://doi.org/10.1038/s41598-023-33999-y (2023).

89. Ghazy, E. A., Abdel Ghany, N. A. & El-Shamy, A. M. Comparative study of cetyl trimethyl ammonium bromide formaldehyde, and isobutanol against corrosion and microbial corrosion of mild steel in chloride media. J. Bio. Tribo-Corrosion 9, 64. https://doi.org/10.1007/s40735-023-00782-5 (2023).

90. Abdelshafeek, K. A. & El-Shamy, A. M. Review on glucosinolates: Unveiling their potential applications as drug discovery leads in extraction, isolation, biosynthesis, biological activity, and corrosion protection. Food Biosci. 56, 103071. https://doi.org/10.1016/j.fbio.2023.103071 (2023).

91. Shehata, M. F. & El-Shamy, A. M. Hydrogen-based failure in oil and gas pipelines a review. Gas Sci. Eng. 115, 204994. https://doi.org/10.1016/j.jgsce.2023.204994 (2023).

92. Elashery, N. H., Megahed, M. M., El-Shamy, A. M. & Saleh, S. M. Archaeometric characterization and conservation of bronze patina on archaeological axe head in military museum, Cairo. J. Archaeol. Tour. Must 2(1), 23–33 (2023).

93. Selwyn, L. Metals and Corrosion: A Handbook for Conservation Professional (Canadian Conservation Institute, 2004).

94. Schaefer, K. & Mills, D. J. The application of organic coatings in the conservation of archaeological objects excavated from the sea. Prog. Org. Coat. 102, 99–106 (2017).

95. Kiele, E. et al. Methyl-modified hybrid organic-inorganic coatings for the conservation of copper. J. Cult. Herit. 15, 242–249 (2014).

96. Hollner, S., Mirambet, F., Rocca, E. & Reguer, S. Evaluation of new non-toxic corrosion inhibitors for conservation of iron artifacts. Corros. Eng. Sci. Technol. 45, 362–366 (2010).

 


 

 

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

    标签:
相关文章
无相关信息