划时代的金属材料——非晶合金
2018-10-10 13:09:50 作者:本网整理 来源:材易通 分享至:

    概论

 

    1定义

 

    非晶合金(Amorphous Alloys)是采用现代快速凝固冶金技术而成,兼有一般金属和玻璃优异的力学、物理和化学性能的新型非晶金属玻璃材料。非晶合金也被称为金属玻璃或液态金属,其组成的内部原子排列为短程有序、长程无序的玻璃态结构,其结构和成分比晶态合金更均匀。

 

1.jpg

图1纳米晶体材料(上排) 和纳米结构非晶材料(下排)

缺陷和化学微观结构之间的类比:

    (a) 晶体材料的熔体结构;(b) 缓慢冷却得到的晶体结构;

(c)晶体材料的微观缺陷结构和(d) 晶体材料微观化学结构;

(a) 非晶材料的熔体结构;(f) 快速冷却得到的非晶结构;

(g)非晶材料的微观缺陷结构和(h) 非晶材料微观化学结构;

 

    严格来说,液态金属(Liquid Metals)和金属玻璃(Glassy Metals or Bulk Metallic Glass)也是两个不同的概念。金属的凝固过程中需要经历一个过冷液相区,即玻璃化转变温度与晶化温度这一温度区间,溶体结构在该温度范围内被迅速冻结,形成金属玻璃,而液态金属是从液态结构直接冻结而来。


    在非晶合金的开发方面,目前已在包括Pd、Pt、Au、Mg、Ca、Zr、Ti、Hf、Cu、Fe、Co、Ni、和稀土(如La、Nd、Ce)基等在内的数十种合金体系。目前非晶合金一共有非晶薄带、非晶粉末、块体非晶这几种形式。液态金属中以Ga合金最为常见。(室温下的液态纯金属有Hg、Cs、Fr和Ga,熔点分别是-38.87℃、28.65℃、27℃和29.8℃)

 

    2非晶合金形成的热力学

 

    非晶合金是一种亚稳态材料。

 

2.jpg


    从高能液态到晶态过程中经历很多亚稳态从能量的观点来看,平衡自由能G=U-TS,非晶相的获得是体系内能U和熵S竞争的结果。体系粒子间的相互作用会导致U降低,倾向于有序化;温度T和熵使得体系无序化。在凝固过程中过冷液体(接近非晶相的自由能)和结晶相之间的吉布斯自由能差△Gl-s(T)决定了体系是够能形成非晶态。小的△Gl-s(T)意味着小的熔化焓变或是大的熔化熵变,即熵在内能和熵的竞争中占优势,这会降低晶化驱动力,有利于非晶的形成。结晶驱动力与过冷度密切相关,过冷度大结晶驱动力也大。

 

3.jpg

    等压条件下不同物态的自由能随温度变化图(左)。

    体系无序非晶相和其它晶态相的自由能对比图(右)。

    图中G,L,α,β分别代表非晶态,液态,2 个同素异形晶态相。


    根据自由能图,可以估判非晶形成的成分区域、非晶形成能力、非晶形成驱动力。非晶相在等成分附近相比晶态相具有较低的自由能,因而在相竞争过程有优势。从相图来看,合金体系是否存在深共晶点和该体系的非晶形成能力密切相关,在非平衡条件下,合金体系易形成深亚稳共晶点,使得体系具有非晶形成能力。

 

4.jpg

    A,B 二元体系自由能图图中G0 为A 和B 两组元机械混合的自由能,M 为非晶态自由能,α,β为固溶体自由能,X 为金属间化合物自由能,△G 为驱动力。


    3非晶合金形成的动力学

 

    从平衡亚稳态向非平衡亚稳态的转变叫非晶体转变。转变开始点温度Tg叫做玻璃转变温度。Tg是非晶态合金重要参数,它与合金成分、冷却速率有关。熔点越低Tm,冷却速率越高,Tg越高,在较高温度下就能发生玻璃转变,有利于非晶合金的形成。发生玻璃转变前的金属液体为过冷液体,从非晶形成过程来看,过冷液体是非晶的本源。非晶合金的结构和很多特性被认为遗传自发生玻璃转变前的过冷液体。

 

5.jpg

    非晶和晶体的形成示意图

 

    过冷是一个非平衡过程,通过过冷来控制形核率(越小)和长达速率(越慢),可获得不同不同性能的亚稳材料包括非晶相。


    利用金属和合金非晶态形成的TTT曲线(Time-Temperature-Transition,也即C曲线)可估算确定临界冷却速率Rc。如TTT曲线所示,结晶的开始线形状如一个鼻尖,在鼻尖处孕育时间最短,最容易发生形核与长大,在此温度范围内冷却速率足够大,就可以避免形核与长大,从而形成非晶相。


    Rc=(Tm-Tn/tn)(Tm为金属熔点,Tn、tn分别为CCT曲线鼻尖所对应的温度和时间)

 

6.jpg

    非晶合金形成的TTT曲线示意图

 

7.jpg

    非晶、过冷液体、液体和晶体之间的关系示意图

 

    4过冷液体的特征和性能

 

    在一定压力下,当金属熔体的温度已低于该压力下熔体的凝固点,而熔体仍不凝固的现象,叫作过冷现象,此时的液体称为过冷熔体。


    过冷熔体是非晶合金的母体。非晶合金的结构和性质具有遗传性。因此过冷液体对非晶合金的研究非常重要。研究表明形成非晶合金的过冷熔体有如下性能特点:


    具有超塑性,极大的柔韧性;过冷熔体的粘度随温度变化及其敏感;过冷熔体弛豫随时间的变化规律表现为非指数性;过冷熔体的退耦合效应;过冷熔体的弛豫行为的时间关联性;过冷熔体的动力学非均匀性;过冷熔体的比热高于非晶合金。


    5非晶合金的结构

 

    非晶合金的四个结构特点:长程无序,短程有序,宏观均匀、各向同性,短程不均匀。目前测定非晶态结构的常用方法如X射线衍射、中子衍射、电子显微镜等等。

 

8.jpg

    PdAuSi体系非晶和其晶化后表面的超声显微图像

 

9.jpg

常用的描述非晶结构的重要结构参数

 

    平均径向分布函数-RDF

 

    非晶中原子的分布仅与径向长度r的大小有关,RDF表示非晶中与原点原子相距r处单位体积的原子密度数。非晶结构的RDF曲线有清晰的第一峰和第二峰,峰的面积等于配位数z,在第三近邻以后几乎没有可辨的峰,ρ(r)趋向平均密度ρ0。

 

10.png

    非晶和其液态的径向分布函数的区别

 

    二十面体与局域五次对称性

 

    二十面体在非晶合金中起着很重要的作用。二十面体结构拥有完美的五次对称结构。二十面体结构与体系的非晶形成能力、玻璃转变和力学行为密切相关。但二十面体团簇在某些非晶合金中所占比例非常低,因此采用普遍存在的局域五次对称性(LFFS)作为一个广泛的参量来描述非晶的结构特征。LFFS结构参量能反映非晶体系塑性形变的结构特征,塑性形变在LFFS强度高的局部区域很难发生。LFFS结构参量还能反映非晶体系的结构特征和结构转变的性质。

 

11.jpg12.jpg13.jpg

    二十面体结构示意图(左)、五次对称性(中)地球与金星连线中点绕太阳的运行轨迹(右)

 

    非晶合金制备方法

 

    一般来说,常规非晶合金的制备方法有很多,主要分为三大类,即近快速凝固法、快速凝固法(Rapid Solidificaiton processing, RSP)和深过冷凝固技术(Large Undercooling Technology, LUT)。顾名思义,近快速凝固法和快速凝固法可以获得很快的冷却速率(减小tn),从而形成非晶合金。而深过冷凝固技术是指提高液体的过冷度(提高△T)达到制备非晶的目的,但冷却速率一般。

 

14.jpg

    非晶合金制备方法的发展历史

 

    新型的纳米结构非晶合金材料(nanostructured metallic glass, NMG)可以通过引入大量的非晶/非晶界面来改变非晶材料的微观缺陷结构和/或微观化学结构, 从而实现对其性能的调控。


    1近快速凝固技术

 

    近快速凝固法的冷却速率一般都小于103K/s,主要有 (包括一些其他的方法):①铜模吸铸法;②粉末冶金技术;③熔体水淬法;④压铸法;⑤非晶条带直接复合一爆炸焊接;⑥定向凝固铸造法;⑦磁悬浮熔炼铜模冷却法;⑧固态反应;⑨从液相中直接制取。


    块体非晶经过三十多年的发展,从贵金属的Pd基和Pt基到相对廉价的Zr基、Hf基和La基,甚至更低廉的Cu基、Ti基和Fe基。制备技术也有了新的发展。


    水淬法

 

    水淬法是制备块体非晶的常规方法之一,其基本原理是:将母合金置于一石英管中,熔化后连同石英管一起淬入流动水中,以实现快速冷却,形成大块非晶合金。实现这个过程有两种方法:一种是将石英管置于封闭的保护气体系统中进行加热(石英管口敞开),同时水淬过程也是在封闭的保护气体系统中进行;另一种是将石英管直接在空气中加热(石英管口须封闭),管内须充入保护气体,待合金熔化后再将石英管淬入流动水中。这种方法熔融金属直接跟流动的水接触,水的比热比较大,可以达到较高的冷却速率,有利于大块非晶合金的形成,但也存在一些问题。


    铜模吸铸法

 

    铜模吸铸法是制备非晶合金最常用、最便捷的方法之一,其基本原理就是,在惰性气体的保护下用电弧迅速将合金加热至液态后,利用负压将熔融合金直接吸入循环水进行冷却,这样能够实现合金的快速冷却,以此来获得大块非晶合金。这种方法在制备块体金属非晶方面具有其他方法不可超越的优势,该办法就是在环境压力与大气压接近的保护气体体系中熔炼合金,所以没有明显的气孔;由液态转入冷却模的时间较短,加上铜模具有优秀的导热性能和高压水强烈的散热效果,能达到较高的冷却速率,工艺过程比较简单,也易于操作。但是这种方法存在一定的不足,会导致合金熔体在铜模冷却过程中会出现样品表面收缩的现象,这样成品就会存在空隙从而导致样品冷却速率下降,或者是样品表面不够光滑的现象。


    感应加热铜模吹铸法

 

    感应加热铜模吹铸法是制备块体非晶和非晶薄带比较常用的方法之一,其基本原理是:将合金置于底端开有一定直径小孔的石英管中,通过高频或是中频的电感线圈产生的涡流加热使得合金迅速熔化,由于表面张力使液态合金不会自动滴漏,故需要从石英管顶部外加一个正气压将其吹入铜模或是高速旋转的铜辊上。与电弧加热吸铸法相比,感应加热浇铸法加热温度可控性强,铜模不被直接加热,电磁搅拌作用使合金成分更加均匀,同时,熔炼的合金量可以从几克到几千克,适合大尺寸非晶合金样品的制备。


    压力模型铸造法

 

    压力模型铸造法的基本原理是:首先将合金在熔化腔中熔化,然后将熔化的合金以一定速度和压力压入金属模型腔中,以实现快速冷却而形成大块非晶合金。由于液态金属对金属模型腔的充填速度很快,并保持较大的压力,与金属模铸造相比,这种方法具有更快的冷却速率和更加明显的淬火效果,更有利于形成大块非晶合金。用这种方法对于高黏性的溶液可直接制作形状较复杂的大块非晶合金零件。


    2快速凝固技术

 

    目前主要的快速凝固法都是通过液态金属与高导热系数的冷衬底之间的紧密相贴来实现热量的快速传递。快速凝固技术的冷却速率可以达到105K/s以上,制备非晶粉末、薄带等小尺寸(至少在某一维度上)的非晶材料很方便。


    气枪法(Qun technique)

 

    基本原理是将熔融的合金液滴,在高压(>50atm)下射向用高导热率材料(一般为纯铜)制成的急冷衬底上获得非晶。由于液态合金与衬底紧密相贴,这种方法的冷却速度极高(>109K/s),这样由此得到的是合金薄膜,最薄处厚度小于0.5~1.0um。


    熔体旋转法(Chill Block Melt-spinning)

 

    将熔融的合金液自坩埚底孔射向一个由高导热系数材料制成的辊子表面上,我们称为旋铸法,辊子高速旋转,液态合金在辊面上凝固为一条很薄的条带(厚度约20~50 um,宽度约2-5 mm)。该的冷却速率一般为105~106K/s。而辊面运动的线速越高的时候,合金液的流量就越小,这样得到的合金条带就会愈薄,冷却速度也就愈高。旋铸法使非晶的连续生产成为了可能,目前已成为制取非晶合金条带的一种常规方法。


    工作表面熔化与自淬火法(Surface Melting and Self-quenching)

 

    用激光束或电子束扫描工作表面,这样表面极薄层的金属就会迅速的融化掉,而下层基底的金属就会迅速吸收热量,表面层(108K/s)就会重新凝固。这种方法已经用在大尺寸工件的表面上来生成非晶层。


    雾化法(Gas Atomization)

 

    将熔融的合金射向高速旋转(表面线速度可达 100m/s)的铜制急冷盘上,在离心力的作用下,合金液雾化后凝固成的细粒就会向四周散开,通过装在盘上四周的气体喷嘴喷吹惰性气体以加速冷却。用雾化法制得合金颗粒尺寸一般为10~100μm,在理想的条件下,我们的冷却速度能够达到106K/s。这样合金粉末通过动态紧实等加工工艺,可制成块料及成型零件。


    3深过冷技术

 

    深过冷快速凝固技术是指在尽可能消除异质形核的前提下,使液态金属保持在液相线下数百度不凝固,然后瞬间形核完成液固转变的一种技术。当过冷度足够大时,晶体的形核与长大过冷将受到抑制,由于凝固潜热通过固液界面被过冷熔体吸收,其凝固过程不受外部散热条件所控制,液态金属将凝固为非晶体合金。


    玻璃包裹法(Flux Melting Technique)

 

    玻璃包裹法是利用熔融氧化物作为净化剂,通过熔融氧化物的黏性吸附作用和界面化学作用,使金属熔体中的异质核心转移到熔融氧化物中,使其失去异质形核作用,从而获得较大的过冷度。


    电磁悬浮法(Electromagetic levitation)

 

    电磁悬浮由高频电流和悬浮线圈组成,悬浮线圈之间存在对称的悬浮力势阱可导致样品能克服重力的束缚,但悬浮线圈又充当加热源,难以保证样品始终处于一个稳定的位置。电磁悬浮是利用强电磁场波来悬浮和定位导电材料,当导电样品置于电磁场中时,将会在样品中诱导产生涡流。由于诱导电流和电磁场的接触,将有一个力作用于样品,这个力可以克服重力而使物体处于平衡状态。这种诱导涡流通过欧姆损失产生焦耳热,因此,如果没有冷却系统,样品可被加热到熔化。在样品中的电磁力将会诱导熔融试样的流动。所以,电磁悬浮有两大限制:(1)只能是导电样品;(2)样品能够内部加热。

 

15.jpg
电磁悬浮装置

 

    静电悬浮法(Electrostatic levitation)

 

    静电悬浮是利用静电场中带有静电的样品受到的库仑力来抵消重力,实现无容器状态。根据Earnshaw定理,静电场不存在三维最小静电势,所以要实现稳定悬浮就必须结合负反馈控制系统。静电悬浮前样品必须预极化,主要有三种方式:静电感应带电、光电效应带电和热电子发射带电,三种方式结合使用才能实现样品的稳定悬浮。由于静电悬浮的无容器、高真空、高温和可实现稳定悬浮,因此在熔体的热物性、冷却与凝固、材料的合成与制备和空间实验等方面已经有初步的应用。但是,静电悬浮设备庞大复杂,造价昂贵。


    静电悬浮的优势:加热和悬浮独立控制,超高真空环境,能悬浮表免带点的试样,有反馈式调整系统稳定样品。

 

16.jpg

    静电悬浮装置示意图

 

    3纳米结构非晶合金的制备方法

 

    新型的纳米结构非晶材料可以通过引入大量的非晶/非晶界面来改变非晶材料的微观缺陷结构和/或微观化学结构, 从而实现对其性能的调控。


    惰性气体冷凝法(Inert gas condensation)

 

    惰性气体冷凝法的原理是在惰性气体环境下加热母合金至熔融态, 蒸发出的原子与惰性气体分子碰撞后失去动能凝聚成纳米尺度的非晶颗粒(直径分布在几到十几纳米之间)。 这些纳米非晶颗粒在热对流的作用下沉积到设备中间的液氮冷却柱上。 随后通过一个刮板将颗粒从冷却柱上刮落收集后通过原位高压成型技术制得NMG块体材料。这种通过IGC 方法制备的NMG 在物理过程上由于先形成纳米非晶颗粒, 然后再压制形成块体。


    磁控溅射法(magnetron sputtering)

 

    磁控溅射法的原理是在电场的作用下产生等离子体高速轰击靶表面, 使靶材发生溅射, 溅射出的靶原子或分子沉积在基片上形成薄膜。


    脉冲电沉积法(Pulsed electrodeposition)

 

    脉冲电沉积法基本原理是在外加电压下通过电解液中金属离子在阴极表面还原为原子而形成沉积层。 制备过程中首先通过一个高脉冲使形核速率远大于生长速率, 然后采用一个中等程度的脉冲使形核率降低,生长速率增大, 控制非晶颗粒的尺寸, 最后通过关断或施加一个反向脉冲实现溶液中离子浓度分布的再平衡。 通过不断重复这个过程, 实现了NMG薄膜的制备。


    剧烈塑性变形法(Severe plastic deformation)

 

    剧烈塑性变形法是通过剧烈塑性变形在块体非晶合金中产生剪切带(shear bands) 从而影响块体非晶合金的微观结构以及原子结构。通常随着塑性变形量的增加, 剪切带的密度也会增加, 可产生剪切带的最小间距一般在100 nm 至几微米之间。


    非晶合金的性能

 

    非晶合金的性能特点概括如下:

    详情请点击链接:mp.weixin.qq.com/s/12oXA8vTBEisfRAaN6JcvQ

 

 

 

更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注中国腐蚀与防护网http://www.ecorr.org

 


责任编辑:王元

 


《中国腐蚀与防护网电子期刊》征订启事
投稿联系:编辑部
电话:010-62313558-806
邮箱:
fsfhzy666@163.com
中国腐蚀与防护网官方 QQ群:140808414

 

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。