0 前言
热喷涂是将一种粉末或丝状的材料在不同热源中进行加热至熔化或软化态,然后在高速气流的推动下加速喷到基材表面,凝固后形成具有耐腐蚀、耐热、耐磨、抗氧化等良好性能的防护涂层加工技术[1]。依据不同热源形式,热喷涂技术可分为火焰喷涂、电弧喷涂、爆炸喷涂、等离子喷涂以及其他形式的喷涂技术,另外,当推动气体温度较低时,载体气体加速粒子达到超音速后使其在基材表面发生塑性变形也可以形成涂层,即所谓的冷喷涂技术[2]。热喷涂技术具有基材和喷涂材料选择多、喷涂工艺种类多、涂层厚度可从微米级到厘米级、可制备复合材料的涂层、甚至可用于增材制造等优点[3], 从1920年该技术出现到现在,一直是制造业备受关注的方向。在我国热喷涂的发展始于国防军工行业, 特别是在导弹、火箭、卫星、坦克零部件及航空发动机叶片、喷火筒、导弹滑轨等部位有重要的应用,后来逐步发展到民用产品,已在电力、冶金、矿采、纺织、印刷、铁路、医疗、海洋装备等多个领域得到广泛的应用[4-7],已成为典型的军民两用技术。
但是,任何技术的发展也需要随着使用要求的提高和社会的进步等因素的影响而不断前进,在军事领域这种趋势往往表现得更为明显。鉴于此,本文的目的是在总结近年来热喷涂技术在典型武器装备的研究应用现状的基础上,从技术层面分析了影响热喷涂发展的关键共性技术问题,并展望了该技术在军事领域的应用前景,尤其是用于增材制造和再制造领域的可行性。
1 航空装备的防护涂层应用
1.1 航空发动机叶片的热防护
等离子喷涂技术是利用等离子弧将喷涂材料进行加热、加速,在基材表面沉积涂层的工艺技术[8], 是目前热喷涂技术中能量密度较大、喷涂温度较高的工艺技术之一,也正因其超高温特性,在热喷涂应用中可喷涂高熔点材料[9-10]。
随着航空发动机结构的优化和技术的进步,其内部工作温度也不断攀升。目前先进发动机燃烧室高温区温度在2 000℃ 左右,其压气机出气温度高达650℃ 以上,涡轮进气匣气流温度达到1 700℃ 左右[11-12]。因此,现阶段普遍采用钛合金、镍合金等合金材料制造相关零部件,但依旧存在高温失效的“卡脖子”问题[13-14]。另外,研究证实改变基材材料只能轻微幅度提升耐温值,仍不能突破温度的上限问题。
等离子热喷涂热障涂层是航空航天领域应用相对完善的一种表面修复与强化工艺技术[15],其运用等离子喷涂工艺喷涂耐高温陶瓷涂层在基材表面, 利用陶瓷涂层阻遏基材的高温反应,涂层隔热作用提升了热端部件的耐温性能[16-17]。例如,Honeywell公司研究的涡轮导向器采用等离子喷涂一种新型热障涂层,并计划应用于新型无人机和直升机等航空武器装备。
为提高发动机效率,在高压涡轮叶片的叶尖上采用控制叶尖与机匣间隙的立方氮化硼(CBN) 涂层,当间隙缩小125 μm时,耗油率可降低0.5%。美国关于CBN涂层新旧技术的对比表明,抗氧化层目前采用等离子喷涂CoNiCrAlY涂层[18-20],改进型CBN涂层则在此基础上加入铪、硅或铼。目前的涂层基材为电镀NiCoCrAl, 而改进型CBN则为在NiCoCrAlY中加入铪、硅或铼。目前采用的磨粒为多晶CBN,而改进型则为带尖角的单晶。以往的扩散层采用铝化物涂层,而新涂层则采用双铝化物或铂铝涂层[21]。采用这种新型氮化硼叶尖涂层,可显著改进涂层抗氧化性,延长涂层寿命。
1.2 飞机起落架的替代镀铬技术
为了解决飞机起落过程中受到较大的冲击载荷与磨损,实际应用中往往在起落架液压杆表面镀硬铬层。但镀铬层的硬度会随时间不断下降,因此起落架的寿命维持不尽人意,报废周期短,且镀铬工艺因污染环境被列入严格限制的技术。针对其工况与技术要求,现阶段国内外通常通过超音速火焰喷涂技术实现起落架的表面修复与强化。有研究表明, WC-Co金属陶瓷作为喷涂材料修复工件,修复后涂层相较于原镀铬层硬度提升50%,修复再制造后的零件使用寿命比传统的镀铬零件显著增长,经济效益显著[22]。
1.3 直升机的冷喷涂防护应用
美军在2012年曾公布,将美国陆军研究实验室经过多年研究开发的冷喷涂等技术应用于直升机防沙尘冲蚀和腐蚀结构修复,可大幅度降低直升机维护成本。具体是在直升机旋翼浆叶的前缘利用高速火焰喷涂技术涂覆碳化钨-钴涂层,在直升机旋翼浆叶前缘以外的区域冷喷涂铌涂层,这种涂层可以承受沙漠地区恶劣环境。
美军还正在军用直升机其他主要部件上进行冷喷涂技术腐蚀防护应用研究,特别是对镁合金主传动装置和尾桨变速箱体等的腐蚀结构进行冷喷涂修复。研究表明, 采用这种冷喷涂防护技术, 在ZE41A、AZ31B和AZ91D镁合金表面沉积0.30~0.375mm纯铝涂层,耐盐雾腐蚀时间达1 000h左右,应用于直升机镁合金传动箱,可使传动箱的腐蚀防护性能提高约22%,运营与维护成本减少15%。
2 武器装备的隐身涂层应用
隐身技术是降低目标可探测性、完善防空武器体系、提高纵深打击能力的重要手段,在武器装备表面涂覆隐身材料是目前使用最多、最有效的技术之一[23]常隐身涂层包括雷达波隐身、红外隐身、激光隐身、声纳隐身和兼容性隐身(可称多功能隐身)等涂层,目前,隐身涂层技术正朝着多频谱、宽频带的方向发展[24]。
隐身涂层的制备较多地采用粘结剂复合隐身材料以涂刷的形式实现涂覆,也有采用溶胶-凝胶或化学镀的方式制备涂层。近几年,人们发现采用热喷涂的方法在制备隐身涂层方面具有很大的潜力[25]。因为喷涂粒子在工艺过程中能获得高动能、高热能,并在基材表面沉积高质量涂层,使粒子与基材紧密结合,同时涂层厚度可调控。除此之外,无机陶瓷粉末涂层具有优越的隔热效果和硬度[26-29],综上,热喷涂工艺在耐高温吸波材料制备涂层领域具有很大的发展潜力。例如,YUAN等[30] 通过低温高速火焰喷涂技术在Al基材沉积 α-Fe/环氧树脂复合材料粒子,成功制备了含量为70%的 α-Fe、厚度为1.5mm的涂层,并检测发现在12.8~14.5GHz频段内其反射率为-10dB, 频宽为2.65GHz。 B?GARD等[31] 分析了由大气等离子喷涂制备的BaCoTiFe10O9 涂层,结果表明大气等离子喷涂制成的涂层在电磁波吸收方面有广阔的前景。另外, NANOBASHVILI等[32] 通过水稳等离子喷涂技术沉积B4C涂层,其优越的微波吸收能力主要体现在35GHz频率下,且吸收比例高达82%。
3 舰船装备的防腐与防滑非晶涂层应用
防滑涂层对大型舰船的人员安全以及舰载机作业,尤其是舰船飞行甲板作业有着非常重要的作用, 飞行甲板防护涂层的好坏直接影响载机舰(如航母、两栖攻击舰等大型舰船) 的在航率和飞机起降架次率,是使用要求最高、磨损率最高的一类防滑涂层。以美国为例,美国海军目前有10艘航空母舰在役,每年有近34.4万m 2 的舰艇表面需要使用防滑涂料,费用在5 600万美元以上;当前的使用寿命仅18个月,维护和更换不仅影响防滑表面的使用,而且耗费巨大。因此,载机舰飞行甲板防滑涂层的研究一直是航母使用国关注的重点。
现役海军大型舰船上应用的甲板和舱室涂层材料绝大多数采用树脂基涂料[33],也有少部分采用金属基材料[34],而金属基涂层普遍有耐磨、不发生老化、摩擦因数稳定、与基底结合力强、施工和高温下不会挥发有毒气体等优点。在金属基涂层中,近年来新发展的热喷涂非晶态金属基涂层非常值得关注[35-36]。非晶态金属的原子整体上排列无规律,具有短程有序、长程无序的特点,没有位错、晶界、相界等传统晶态金属的固有缺陷。因此,非晶态金属基涂层与传统的金属基涂层相比,具有强度高、质量轻、耐腐蚀、耐磨损等特点。
美国国防部高级研究计划局(DARPA)联合能源部开启“高性能防腐材料”项目,该项目以研发硬度极高的非晶态铁基金属材料为目标,将其作为恶劣环境中的腐蚀防护的喷涂材料。在项目进展中研制出两种非晶态铁基金属材料,命名为SAM2X5、 SAM1651(或称SAM7)。其耐腐蚀性相比于最优质不锈钢及Ni金属可提高至4至5倍,且有更好的耐磨损性能[37]。另外,研究人员在超音速火焰喷涂工艺下制备的SAM2X5与SAM7非晶涂层,并采用Triga核反应器做中子吸收能力检测,科研人员发现SAM2X5和SAM7中子吸收能力极高(最优质不锈钢及Ni基合金的7倍、硼钢的3倍)。另外,铁基非晶涂层在较强的中子辐射工况中表现出稳定的非晶结构,预测以上两种非晶涂层能有效安全地储存4 000~10 000年,在运输核废料和安全储存方面也存在巨大的应用前景。
综上所述,高性能防腐材料的研究取得阶段性成果,随后以DARPA为首又启动了“海军先进非晶涂层”(NAAC) 项目[38],采用热喷涂技术制备出有纹理的非晶态金属涂层,其具有摩擦系数高,耐磨损等特点,综合性能超过现有的防滑涂层体系,将其应用在“近海战斗舰”的湿态任务区甲板[39-40]。 “近海战斗舰”的湿态任务区是位于舰艉的宽大舱室,主要用于刚性充气艇的收放,需要间歇性接触海水,还会遭受小艇收放时对甲板产生的磨损,因此被认为是检验涂层防滑、耐磨和耐腐蚀性的合适平台。 A&A热喷涂公司是NAAC研发项目的成员单位之一,该公司公布开发的非晶态金属涂层于2009年展开了试验舰的应用测试,其中包括大型舰船的飞行甲板,目前该应用研究方向还在持续推进当中[41]。
非晶态金属基涂层具有优于树脂基和晶态金属基涂层的综合性能,尤其是具有超长的使用寿命,可以大大减少舰艇涂层维护更换时间和费用,提高舰艇在航率。一旦在施工效率上和涂层综合质量上进一步突破,则可在海军舰艇上大规模推广应用。
4 热喷涂在增材制造领域的应用
4.1 增材制造技术展现巨大军事应用潜力
3 D打印(或称增材制造)的概念最早由美国麻省理工学院在20 世纪90 年代初提出。 21 世纪以来,3D打印技术得到迅速发展,引起了持续的关注[42-43]。英国学者认为,3D打印技术和数字化生产模式将纳入第三次科技革命范畴,成为新工业革命的强大推动力;2012 年,以美国DARPA为首构建的国家增材制造科研机构,将增材制造技术列入革新美国制造业首位技术,全力推动这项技术深入探索和广泛普及, 推进武器装备的快速设计、制造及维修。
2012年,洛克希德·马丁公司采用电子束增材制造技术,实现3m长的F-35机翼钛合金零部件成型。中国王华明院士团队也曾利用激光熔覆技术成功打印出飞机用大型钛合金结构件[44]。通用电气公司将增材制造技术应用于制造发动机叶片,其中加工1.22m长的钛合金零件促使每台发动机成本减削2.5万美元。密歇根大学开发出的增材制造设备可满足战场部署需求,能够迅速高效地完成受损叶片等发动机零部件的修复工作。美国材料试验协会(ASTM) 国际委员会针对Ti-6Al-4V的增材制造方法制定了F2924-12标准[45]。这是第一个增材制造的材料标准,对推动其广泛普及具有重要意义。波音、通用电气等大型企业都致力于将此技术应用到实际生产中。波音公司运用增材制造技术生产了F-15、F-18等军用飞机以及民用飞机共计10类产品的零部件。此外,美国海军已决定运用增材制造技术制造某型水声换能器超过50%部件。美国国家航空航天局(NASA)正在将3D打印技术广泛应用于新一代重型运载火箭—“航天发射系统”(SLS)的研制中[46],包括利用3D打印机制造系统零件等。
3 D打印技术面临的多方面问题和挑战至今仍未得到突破性进展。一是成本方面,较为昂贵的3D打印设备延缓了其普及应用的趋势。二是成型材质方面,化学聚合物为3D打印主流成型材料,在此基础上的成品模型物理性能不高,在安全方面也存在短板,金属材料的3D打印目前还存在很多技术难题,材料适用面不够广。三是精度、速度和效率方面,逐层打印不能有效保证3D打印的精度要求;低下的工作效率不能有效普及在大规模生产中,除此之外,由于工作原理限制,兼顾精度与速度问题在目前仍没有有效的解决。四是产业产权方面,现有的知识产权保护机制不能解决普及3D打印技术出现的产品复制和产品扩散问题,制造业面对的盗版风险大增,难以适应未来市场需求变化和技术发展趋势。
4.2 热喷涂增材制造的优势应用方向
学界大量的注意力集中在3D打印,打印材料早些年以塑料为主,近些年以金属和陶瓷材料为主的3D打印技术也得到了快速发展。其中除了基于激光束、电子束等高能束流的金属和陶瓷3D打印技术之外,热喷涂(包括冷喷涂)技术也是3D打印技术的一个发展分支,在实现特定条件的厚成形、特种材料的零件直接制造等特殊领域表现出了独特的优势,从而受到越来越多的关注,尤其是在对喷涂厚成形、材料、成形机理及关键技术等方面开展了较多的基础性研究工作。例如冷喷涂区别于激光3D打印工艺,具有避免高温化学反应、粒子选择范围广、成本低等优势[47-50]。当前,国外有关于冷喷涂增材制造铜、钛和不锈钢零件的相关研究,研究涂层厚度大于5mm的铜块材抗拉强度达200MPa,达到其铸态组织的强度[51]。美军陆军研究室协同南达科他矿业及理工学院研发新一代混合冷喷涂系统,并期望将此技术延伸至国防领域。除此之外,具有优秀厚成形能力的铁基非晶涂层也成为了目前的一个研究重点, BRANAGAN等[52] 利用电弧喷涂技术以6.35mm的碳钢平板为基材、SHS7170粉芯丝为喷涂材料制备了20mm厚的铁基非晶纳米晶涂层。
5 结论与展望
热喷涂技术走过了近100年的发展历程,虽然在喷涂材料、工艺及设备等方面均取得了长足的进步,面对日益增长的工业需求,该技术一定会继续发展下去,在军事领域也不例外。分析认为,今后关于热喷涂技术的研究可主要集中在以下方面:
(1) 以具体军事应用需求为牵引,开展先进涂层材料及喷涂设备工艺的开发。面对更多更广泛的军事应用领域,热喷涂技术在新材料性能提升、涂层组织性能缺陷调控和新型设备开发等方面进行深入的研究工作,尤其是需要在涂层残余应力、界面结合强度、组织结构缺陷等薄弱环节上取得技术突破。热喷涂的工艺特点决定了涂层成形过程中产生的本征残余应力(或称固有应力、骤冷应力) 为拉应力, 这对于高性能涂层的制备及安全服役极为不利;在基体表面进行喷涂,通常形成的是一种典型的异质双层或多层结构,特别是涂层/基体结合部位,通常以机械嵌合为主要的界面结合机制,该界面处的拉伸结合强度通常难以提升到百兆帕量级,进而严重限制了该技术的应用范围;另外涂层微观结构结构中的微孔隙和氧化夹杂等缺陷也会影响涂层材料性能的发挥。因此,亟待开发新工艺、新技术以实现涂层残余应力的有效调控、界面结合强度的大幅提高、少缺陷甚至无缺陷的涂层组织的可控制备,进而拓展热喷涂技术的应用领域。
(2) 充分挖掘热喷涂在增材制造与再制造领域的应用潜力,开辟新领域。随着智能制造的进一步发展成熟,新的信息技术、控制技术、材料技术等被广泛应用到制造领域,3D打印技术也将被推向更高的层面。除将其引入商业市场扩大其产业化规模外,还大力拓展该技术在军事领域中的应用。热喷涂也需要充分利用这一发展契机,充分挖掘热喷涂技术可以实现军事领域3D打印和增材再制造的应用场合,掌握技术前沿、放眼未来开展前瞻性的技术开发和升级换代,以点带面,以此引领该技术在制造领域的长久发展,以推动武器装备保障模式和作战样式的发展进步。
参考文献
[1] 梅雨菲,周宁,刘正钦,等.常用制备耐磨涂层的热喷涂技术[J].教育现代化,2016(12):84-85.
MEI Yufei,ZHOU Ning,LIU Zhengqin,et al.Common technology on thermal spraying to prepare wear-resistant coatings [J].Education Modernization,2016(12):84-85.(in Chinese)
[2] YIN S,MORTEN M,LI W Y,et al.Gas flow,particle acceleration,and heat transfer in cold spray:A review [J].Journal of Thermal Spray Technology,2016,5:1-23.
[3] MEGHWAL A,ANUPAM A,MURTY B S,et al.Thermal spray high-entropy alloy coatings:A review [J].Journal of Thermal Spray Technology,2020,29(5):857-893.
[4] ANG A,AHMED R,BERNDT C C.Biomaterials:Thermal spray processes and applications[J].Journal of Thermal Spray Technology,2018,27(8):1205-1211.
[5] RAVI S A,JAGADEESWARA R C,VETRIVENDAN E,et al.Evaluation of thermal spray alumina coatings on nickel electrode connector for reprocessing applications[J].Transactions of the Indian Institute of Metals,2018,71(2):297-307.
[6] KHOSLA C,KAUR S,BALA N.Investigations of thermal sprayed HAP and HAP-TiO2 composite coatings for biomedical applications[J].Anti-corrosion Methods and Materials,2019,66(1):74-87.
[7] KANG A S,GREWAL,J S,CHEEMA G S.Effect of thermal spray coatings on wear behavior of high tensile steel applicable for tiller blades[J].Materials Today:Proceedings,2017,4(2):95-103.
[8] MARTIN J,AKODA K,NTOMPROUGKIDIS V,et al.Duplex surface treatment of metallic alloys combining cold-spray and plasma electrolytic oxidation technologies[J].Surface & Coatings Technology,2020,392(25):125756.
[9] MA X Q,CHO S,TAKEMOTO M.Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests[J].Surface and Coatings Technology,2001,139:55-62.
[10] 吴涛,朱流,郦剑,等.热喷涂技术与现状及发展[J].国外金属热处理,2005,26(4):2-6.
WU Tao,ZHU Liu,LI Jian,et al.Research progress in thermal spray technology[J].Heat Treatment of Metals Abroad,2005,26(4):2-6.(in Chinese)
[11] 吴朝军,吴晓峰,杨杰.热喷涂技术在我国航天领域的应用 [J].金属加工(热加工),2009(18):23-26.
WU Chaojun,WU Xiaofeng,YANG Jie.Application of thermal spraying in the field of space flight in China[J].Machinist Metal Forming,2009(18):23-26.(in Chinese)
[12] TRAEGER F,AHRENS M,VABEN R,et al.A life time model for ceramic thermal barrier coatings[J].Materials Science and Engineering,2003,358(1-2):255-265.
[13] SHI Z W,WEI H,ZHANG H Y,et al.Characterization and crystallographic analyses of new three-fold Ti(O,C)nanotwins in a hot-pressed Nb-Ti-Al alloy[J].Materials Characterization,2019,139:56-62.
[14] ZHANG X,GAO H,WEN Z,et al.Low cycle fatigue failure analysis of a Ni-based single crystal superalloys at 850 ℃ [J].Advanced Engineering Materials,2019,21(2):1800647.
[15] LASHMIA P G,ANANTHAPADMANABHANB P V,UNNIKRISHNANC G,et al.Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems [J].Journal of the European Ceramic Society,2020,40(8):2731-2745.
[16] MILLER R A.Thermal barrier coatings for aircraft engines:History and directions[J].Journal of Thermal Spray Technology,1997,6(1):35-42.
[17] WRIGHT P K,EVANS A G.Mechanisms governing the performance of thermal barrier coatings [J].Curr Opiu Solid State Mater Sci,1999,4(3):255-265.
[18] CHEN H,FAN M,ZHU W,et al.High temperature oxidation behaviour of combustion flame sprayed CoNiCrAlY coatings[J].Surface & Coatings Technology,2020,385:125431.
[19] CALIARI F R,MIRANDA F S,REIS D A P,et al.Supersonic plasma spray deposition of CoNiCrAlY coatings on Ti-6Al-4V alloy[J].Journal of Thermal Spray Technology,2017,26(5):880-889.
[20] JIANG J,ZHAO H,ZHOU X,et al.Oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings modified by filtered cathodic vacuum arc deposition aluminizing [J].Journal ofThermal Spray Technology,2013,23(1):69-74.
[21] PAULETTI E,D′ OLIVEIRA A S C M.Influence of Pt concentration on structure of aluminized coatings on a Ni base superalloy[J].Surface and Coatings Technology,2017,332:57-63.
[22] HAZRA S,SABIRUDDIN K,BANDYOPADHYAY P P.Plasma and HVOF sprayed WC-Co coatings as hard chrome replacement solution[J].Surface Engineering,2012,28(1):37-43.
[23] AHMAD H,TARIQ A,SHEHZAD A,et al.Stealth technology:Methods and composite materials [J].Polymer Composites,2019,40(12):4457-4472.
[24] CHENG H F,HUANG D Q.Research progress in multi-spectrum compatible stealth materials [J].Journal of Aeronautical Materials,2014,34(5):93-99.
[25] ZHOU S,LIU D Q,CHENG H F,et al.A multilayer film based selective thermal emitter for infrared stealth technology [J].Advanced Optical Materials,2018,6(23):1-8.
[26] MOHAMMED M,ZAIDAN S,SMICH H.Investigation of ceramic coating by thermal spray with diffusion of copper [J].Acta Physica Polonica A,2018,134(1):248-251.
[27] LI C Y,XIE T F,YAO B Q,et al.Polycrystalline Ho:Lu AG laser ceramics:Fabrication,microstructure,and optical characterization [J].Transactions of the Indian Institute of Metals,2017,100(5):2081-2087.
[28] VAIBHAV K B,RAMESH M R.Thermal analysis of a plasma sprayed ceramic coated diesel engine piston[J].Transactions of the Indian Institute of Metals,2018,71(2):319-326.
[29] CHEN P H,LIU Z L,LI R Q,et al.Thermal-sprayed coating of optimally mixed ceramic powders on stainless steel with enhanced corrosion resistance [J].Journal of Iron and Steel Research International,2018,25(2):207-212.
[30] YUAN X J,WANG H G,HOU G L,et al.Nano alpha-Fe/epoxy resin composite absorber coatings fabricated by thermal spraying technique [J].IEEE Trans Magn,2006,42(9):2115.
[31] BéGARD M,BOBZIN K,BOLELLI G,et al.Thermal spraying of Co,Ti-substituted ba-hexaferrite coatings for electromagnetic wave absorption applications [J].Surface & Coat Technology,2009,203(20/21):3312.
[32] NANOBASHVILI S,MATEJICEK J,ZACEK F,et al.Plasma sprayed coatings for RF wave absorption[J].Journal of Nuclear Materials,2002,(307-311):1334-1338.
[33] ALI A,JAMIL M I,JIANG J,et al.An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications[J].Journal of Polymer Research,2020,27(4):1-17.
[34] WANG Y,ZHENG Y G,KE W,et al.Corrosion of high-velocity oxy-fuel(HVOF)sprayed iron-based amorphous metallic coatings for marine pump in sodium chloride solutions [J].Materials and Corrosion,2012,63(8):685-694.
[35] WANG S L,CHENG J C,YI S H,et al.Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying[J].Transactions of Nonferrous Metals Society of China,2014,24(1):146-151.
[36] ZHOU Z,WANG L,HE D Y,et al.Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying [J].Journal of Thermal Spray Technology,2010,19(6):1287-1293.
[37] 洪伟宏.国外航母甲板防滑涂料技术现状及发展趋势[J].舰船科学技术,2015,12:166-169.
HONG Weihong.Situation and development trend of foreign aircraft carrier deck anti-slip coating technology [J].Ship Science and Technology,2015,12:166-169.(in Chinese)
[38] 何磊,赵满,乔贝贝.美军航母腐蚀防控技术研制与应用进展[J].舰船科学技术,2017,8:189-193.
HE Lei,ZHAO Man,QIAO Beibei.Progress in development and application of aircraft carrier corrosion prevention and control technology in U.S.Navy [J].Ship Science and Technology,2017,8:189-193.(in Chinese)
[39] VICTOR K C.The repair of magnesium rotorcraft components by cold spray [J].Journal of Failure Analysis and Prevention,2008,8(2):164-175.
[40] CHE H,LIBERATI A,VO P,et al.Cold spray of mixed Sn-Zn and Sn-Al powders on carbon fiber reinforced polymers [J].Materials Science Forum,2018,941:1892-1897.
[41] CASS W.Machining cold spray additive manufacture for the UH-60 main transmission sump[J].Annual Forum Proceedings-AHS International,2018:25-38.
[42] YEE L Y,SWEE L S,WAI YEE Y.A review of 3D printing processes and materials for soft robotics[J].Rapid Prototyping Journal,2020,26(8):1345-1361.
[43] TARUNPREET S,SANJEEV K,SHANKAR S.3D printing of engineering materials:A state of the art review [J].Materials Today:Proceedings,2020,28(3):1927-1931.
[44] WANG H M,JIANG P,LIU Y F.State of the art and prospects on laser surface modifications of titanium alloys for the aerospace industries[J].Proceedings of SPIE-the International Society for Optical Engineering,2002(4915):167-172.
[45] 景绿路.国外增材制造技术标准分析[J].航空标准化与质量,2013(4):44-48.
JING Lülu.Analysis on foreign additive manufacturing technology standards[J].Aeronautic Standardization & Quality,2013(4):44-48.(in Chinese)
[46] 杨开.NASA 对3D打印的火箭发动机燃烧室进行点火试验 [J].航天制造技术,2018(3):71.
YANG Kai.The conducted ignition test on 3D printed rocket engine by NASA [J].Aerospace Manufacturing Technology,2018(3):71.(in Chinese)
[47] ALKHIMOV A P,KOSAREV V F,PAPYRIN A N.A method of ‘cold’ gas-dynamic deposition[J].Soviet Physics Doklady,1990,35(12):1047-1049.
[48] 李文亚,黄春杰,余敏,等.冷喷涂制备复合材料涂层研究现状[J].材料工程,2013(8):1-10.
LI Wenya,HUANG Chunjie,YU Min,et al.State-of-the-art of cold spraying composite coatings [J].Journal of Materials Engineering,2013(8):1-10.(in Chinese)
[49] ALKHIMOV A P,KOSAREV V F,PAPYRIN A N.A methodof ‘cold’ gas-dynamic deposition[J].Soviet Physics Doklady,1990,35(12):1047-1049.
[50] ASSADI H,GARTENR F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying [J].Acta Materialia,2003,51(15):4379-4394.
[51] SOVA A,GRIGORIEV S,OKUNKOVA A,et al.Potential of cold gas dynamic spray as additive manufacturing technology[J].The International Journal of Advanced Manufacturing Technology,2013,69(9-12):2269-2278.
[52] BRANAGAN D J,BREITSAMETER M,MEACHAM B E,et al.High-performance nanoscale composite coatings for boiler applications[J].Journal of Thermal Spray Technology,2005,14(2):196-204.
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《中国腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606-806
- 邮箱:fsfhzy666@163.com
- 中国腐蚀与防护网官方QQ群:140808414