随着电子技术的发展,电路板上的器件引脚间距越来越小,器件排列更加密集,电场梯度更大,这都使得电路板对腐蚀更为敏感。另一方面,电路板应用环境的拓展和产品可靠性寿命要求的不断增加,使得电路板发生腐蚀失效的风险不断增加。
其中大气环境作为电路板腐蚀发生的外部条件,大气污染物在产品腐蚀发生的过程中扮演了重要角色。由于与大气污染物相关的故障通常在电子产品使用一段时间后才能显现出来,这意味着一旦发生了腐蚀引起的故障,相同环境下相同使用年限的产品将进入故障集中爆发期。同时污染对电子产品的影响是不可逆的,会对维修造成很大困难,甚至导致产品的报废。因此在产品设计之初进行相应的大气污染物的防护设计很有必要。 在以往研究中的有关电路板腐蚀问题,主要聚焦于特定类型的腐蚀机理及缓蚀剂的研究。电路板涂覆涂层的研究中,偏向在平面条件下保护涂层的不同材质、不同厚度等因素对防护和可维修性的分析,少有专门针对工程实际中电路板防护涂层的涂覆薄弱点评估和关于电路板腐蚀防护的系统性介绍。 在以往研究的基础上,本文结合电路板大气污染物防护的实际问题,从电路板典型腐蚀失效和保护涂层的涂覆薄弱点入手,探讨电路板类产品应对大气污染物的具体防护措施。 大气污染物分类 固态微粒——灰尘 灰尘中通常含有氯离子、硫酸根、硝酸根等水溶性盐分。除了直接使设备内部金属接插件或金属触点接触不良外,还会在金属表面促使水膜的形成。水溶性成分溶解在水膜中,将会加速金属腐蚀的发生,导致电路板绝缘阻抗下降。若在电路板工作过程中,可能会发生更为严重的电偶腐蚀。 液态空气污染物——盐雾 此处描述的液态空气污染物除了广义上的液体外,还包含了被气体携带的液体和空气中雾化液滴状物的气溶胶。沿海地区的空气中,盐雾含量较高,主要成分是NaCl,NaCl在化学上比较不活泼,但在潮湿及有水的情况下,会产生Cl-,与Cu,Ni,Ag等金属或合金反应。 气态空气污染物——SO2,H2S 含硫化合物是大气中最主要的污染物之一,大气中H2S和SO2主要来自采矿、含硫燃料的燃烧及冶金、硫酸制造等工业过程。H2S和SO2是强可变组分,H2S在加热情况下可分解为H2和S。排放到空气中的SO2与潮湿空气中的O2和水蒸气反应,在粉尘等催化剂作用下化合生成H2SO4。 腐蚀失效机理和形态 局部腐蚀 腐蚀集中在金属材料表面的小部分区域内,其余大部分表面腐蚀轻微或不发生腐蚀。主要由于金属表面状态(涂层缺陷、化学成分等)和腐蚀介质分布的不均匀,导致电化学性不均匀,即不同的部位具有不同的电极电位,从而形成电位差,驱动局部腐蚀的产生。在局部腐蚀过程中,阳极区域和阴极区域区别明显,通常形成小阳极大阴极的组态,阳极腐蚀严重。 微孔腐蚀 一种特殊的局部腐蚀,常见于镀金元件上的特殊电偶腐蚀。由于镀层表面微孔或其他缺陷的存在,中间过渡层甚至基体金属暴露在大气中,Au与其他金属形成大阴极小阳极的电偶对,发生电化学腐蚀。腐蚀产物的出现进一步导致表面缺陷的增大,最终导致镀层破坏。受接触表面微孔腐蚀产物的影响,腐蚀区域将表现出较高的接触阻抗和相移。 电解腐蚀 在相邻导体间距较近且存在偏压的情况下,将形成较强的电场。若此时导体存在液膜,电位较高的导体将会被溶液电解,形成的离子向另一导体迁移,导致导体间绝缘性能迅速下降,破坏导体,最终导致设备失效。 典型腐蚀与防护 电路板典型腐蚀失效 电路板上会用到多种物料,物料的选型对于腐蚀反应的发生有重要影响。以工程实际中遇到的厚膜电阻硫化、SMD LED两种典型硫化失效和印制板铜腐蚀为例,比较不同器件封装结构和材料选择对电路板抗腐蚀能力的影响。 厚膜贴片电阻硫化腐 典型抗硫化电阻封装结构如图1所示。通过1年的对比应用试验表明,电阻硫化失效率大大降低,新封装结构的厚膜电阻具有良好的抗硫化作用。 硅胶封装LED硫化腐蚀失效 典型的贴片封装LED结构如图2所示,其中与金线相连的一般为镀银支架,灌封材料则通常根据厂商而异。实际应用中,在含硫量较高的地区使用硅胶封装LED,被硫化的风险很高。 图2 贴片LED结构 图3 被硫化的硅胶封装LED 图4 金相显微镜下的被硫化的硅胶封装LED开封图片 图5 LED支架区域SEM图像 图6 EDS分析结果 印刷电路板的铜腐蚀 图8 化学镍金处理的电路板过孔腐蚀 图9 热风整平喷锡处理的电路板过孔腐蚀 图10 电路板ICT测试压痕 涂层涂覆 印制电路板的器件腐蚀通常从引脚或器件边缘诱发,历经表面涂层损伤、界面腐蚀扩展、金属腐蚀扩展、元器件内腔腐蚀等阶段。三防漆作为一种特殊配方的涂料,用于保护电路板免受环境的侵蚀。 表1 IPC-A-610建议涂覆厚度 图11 保护涂层的薄弱点 图13 盐雾试验方案 试验结果表明,在三防漆涂覆工艺相同的前提下,不同物性参数和涂覆厚度的三防漆在电路板的防护效果上有较大的差异。适当提高三防漆材质黏度和厚度能有效改善器件引脚处和器件边沿处防护效果,保证涂层的完整性,进一步提高了电路板器件工作过程的抗腐蚀能力。 结构防护 图15 IP67电路板防护外壳 提高防护等级可能会导致如散热、人机交互、成本等方面的问题。当系统中引入风扇时,需注意风道设计。根据设备的使用环境,合理选择产品的散热方式和风扇的位置。当风扇置于进风口位置,应注意避免在设备内部形成涡流,且进风口位置避免放置管脚密度较大的器件,以减少局部区域积灰严重的问题出现,避免固体颗粒污染物聚集。 结论 3) 适当提高结构设计的IP防护等级和合理的风道设计,可以有效降低大气污染物入侵。01
02
03
免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。
官方微信
《腐蚀与防护网电子期刊》征订启事
- 投稿联系:编辑部
- 电话:010-62316606-806
- 邮箱:fsfhzy666@163.com
- 腐蚀与防护网官方QQ群:140808414